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Abstract

Viscous, axisymmetric vortex rings are investigated numerically by solving the in-
compressible Navier-Stokes equations using a spectral method designed for this type
of flow. The results presented are axisymmetric, but the method is developed to be
naturally extended to three dimensions. The spectral method relies on divergence-
free basis functions. The basis functions are formed in spherical coordinates using
Vector Spherical Harmonics in the angular directions, and Jacobi polynomials to-
gether with a mapping in the radial direction. Simulations are performed of a single
ring over a wide range of Reynolds numbers (Re = I'/v), 0.001 < Re < 1000, and
of two interacting rings. At large times, regardless of the early history of the vortex
ring, it is observed that the flow approaches a Stokes solution that depends only on
the total hydrodynamic impulse, which is conserved for all time. At small times,
from an infinitely thin ring, the propagation speeds of vortex rings of varying Re
are computed and comparisons are made with the asymptotic theory by Saffman.
Our results are in agreement with the theory; furthermore, the error is found to be
smaller than Saffman’s own estimate by a factor /vt/R? (at least for Re = 0). The
error also decreases with increasing Re at fixed core-to-ring radius ratio, and ap-
pears to be independent of Re as Re — oo. Following a single ring, with Re = 500,
the vorticity contours indicate shedding of vorticity into the wake and a settling
of an initially circular core to a more elliptical shape, similar to Norbury’s steady
inviscid vortices. Finally, we consider the case of “leapfrogging” vortex rings with
Re = 1000. The results show severe straining of the inner vortex core in the first
pass and merging of the two cores during the second pass.
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Chapter 1

Introduction

1.1 Review of Literature

Vortex structures are often observed in complex flows, and as Helmholtz vortex
laws dictate for unbounded flow, a vortex line must close upon itself. Topologi-
cally, the most simple three-dimensional structure is a vortex ring. This problem
has fascinated engineers, scientists, physicists and mathematicians alike for over
one hundred years. Among the first theoretical studies were the works of Kelvin
(Thomson 1867) and J.J. Thomson (1883) who investigated vortex rings as candi-
dates for the fundamental structure of atoms. In an appendix in which Helmholtz’ .
paper Is translated to English, Kelvin (1867) gave (without proof) the well known
formula for the velocity of translation of a thin vortex ring having uniform vorticity
(w/y = constant, where w is the vorticity and y is the distance from the axis of
symmetry). The propagation speed has a logarithmic dependence on core radius
such that the ring speed is finite for a finite core radius, and in the limit of zero
core radius, the ring speed is infinite. This result was later verified by Hicks (1885)
and Gray (1914). It was then extended to a viscous vortex ring by Tung and Ting
(1967) and derived by different means by Saffman (1970) (where he discovered a
numerical error in the results of Tung and Ting ). In the present work, Saffman’s
expression is verified and extended to higher order numerically. Furthermore, the
effect of Reynolds number is quantified.



1.1 Review of Literature ‘ ’ 2

A classical view of vortex rings is given in Lamb (1945), Prandtl & Tietjens
(1934), Sommerfeld (1950) and Batchelor (1967). Based on inviscid theory, a circu-
lar core of uniform vorticity travels under its own induced velocity as predicted by
Kelvin. Furthermore, surrounding the vortex core and carried with it is a bubble
of irrotational fluid which extends to the axis of symmetry unless the core-to-ring
radius is smaller than about 0.01. The role which viscosity plays in the real flow
was perhaps first observed by Reynolds (1876) where he states that ... they are
continually adding to their bulk water taken up from that which surrounds them
and with which their forward momentum has to be shared.”

Vortex rings are experimentally generated by forcing a slug of fluid through a
nozzle with a sharp lip (Maxworthy, 1977, Didden, 1979) or through a hole in a
rigid wall (Glezer, 1981). Vorticity generated along the walls separates from the
trailing edge and spirals into a vortex ring. By injecting either smoke into air, or
dye into water at the lip, the ring is made visible through streaklines (1964 Mag-
arvey & MacLatchy). This flow visualization technique became widely publicized
through the huge smoke rings generated on the Camel cigarettes billboard in Times
Square in New York. As pointed out by Magarvey & MacLatchy (1964) and oth-
ers (Maxworthy, 1972), interpretation of the dye requires caution since the flow is
viscous and the vorticity diffuses much more quickly than the dye. For example, a
streakline can show a spiral structure, while the corresponding vorticity distribution
is a smooth Gaussian.

A vortex ring is characterized by the ring radius, translational velocity, and the
circulation. In an experiment, we must relate the parameters associated with the
apparatus (the nozzle diameter, velocity history of the piston, and stroke length)
to those of the ring. This subject is described by Didden (1979) where he exam-
ines detailed velocity measurements of the flow at the nozzle exit and relates this
to the final circulation. Furthermore, Didden shows that the starting process is
strongly dependent on secondary effects such as the vorticity of opposite sign which
1s generated on the outside of the nozzle. "

Once the laminar sheet of vorticity leaves the nozzle, and spirals into a vortex
ring, several situations are possible depending on the Reynolds number (Maxworthy,
1972). For Reynolds numbers less than around 600 (based on initial translation
velocity and maximum bubble diameter), a stable, laminar vortex results. For
Reynolds numbers greater than 600, azimuthal waves develop, as first demonstrated
by Krutzsch (1939) and later observed by Widnall & Sullivan (1973), Liess & Didden
(1976), and Maxworthy (1972, 1977) and numerically by Knio & Ghoniem (1988)
with an inviscid vortex method. If the Reynolds number is greater than around
1000, the waves grow to amplitude where they break, resulting in turbulent flow.
After some period of time a new stable ring emerges. This process was occasionally
found to repeat itself as implied by Krutzsch, and then later reported by Brasseur
(1985). Among the unanswered questions are the effects of viscosity and swirl on the
instabilities (Saffman, 1978). Fully turbulent flow was investigated by Kovasznay,
Fujita, Lee (1973) and later by Glezer (1981), who fully exploited the similarity of
the flow resulting from Reynolds number invariance.
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Three dimensional instabilities and the resulting turbulent vortex rings de-
scribed above are beyond the scope of the studies considered here, as the results we
will present are for axisymmetric rings. The numerical method, however, is natu-
rally extended to three dimensions and will enable three dimensional effects to be
studied at moderate Reynolds numbers in future work.

Because of the inherent unsteadiness of vortex rings, both temporally and spa-
tially, quantitative measurement of the time-dependent vorticity and velocity fields
has presented challenges to experimentalists. Widnall & Sullivan (1973) presented
the first measurements of vorticity distributions at a single time in the evolution.
Similar measurements were also shown by Maxworthy (1977). Other experimental
results by Sallet & Widmayer (1974) give the time dependent ring velocity, ring
diameter, core diameter and circulation. Maxworthy (1972) presents a model for
the behavior of viscous stable rings. He proposes that, in contrast to the classical
models, the vorticity is distributed throughout the bubble of fluid carried with the
vortex core, and furthermore, the bubble shape grows in a self-similar fashion. The
external irrotational fluid flows past the bubble, and through viscous diffusion a
thin layer mixes with the vorticity in the bubble. The total pressure in the thin
layer is reduced, and fluid is therefore entrained into the rear of the bubble. In order
for the model to be dynamically consistent, he argues that vorticity is continually
being shed into the wake. In our simulations, we show that there is indeed a wake
of weak vorticity continually being shed.

It is natural to look for steady inviscid solutions (in the frame of reference
traveling with the ring). A very early result by Hill (1894) gave such a solution
with uniform vorticity (w/y = constant) distributed in a sphere, known as Hill’s
spherical vortex. The existence of steady thin rings was proved by Fraenkel (1972),
and Norbury (1973) studied rings of finite size. Norbury’s family of steady rings
range from thin rings at one end to Hill’s spherical vortex at the other. For a viscous
vortex, it is not possible to have a steady solution (because the energy decays). Our
numerical viscous solutions, however, show a quasi-steady behavior (a nearly self-
similar shape in a translating frame) with vorticity distributions reminiscent of
Norbury’s rings.

As the vortex ring propagates, fluid is entrained and the bubble of vorticity
continues to grow. Meanwhile, vorticity is diffusing across the axis of symmetry
and canceling with vorticity of the opposite sign, so that in the limit of large-time,
the circulation goes to zero. The circulation is one measure of the Reynolds num-
ber. It follows that the Reynolds number is decreasing in time and asymptotically
approaches zero.

For sufficiently large time, the convective term is negligible and we are left
with the Stokes equations. The most slowly decaying solution to these equations
is what is often termed the Stokes solution. This is an analytic solution first de-
rived by Phillips (1956), which he points out is the final period of decay for any
initial vorticity distribution in an infinite domain where the flow at infinity is at
rest. Further studies of this regime were made by Kambe and Oshima (1975) where
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they experimentally verify the predicted t73/2 decay of velocity and claim to have
extended the large time solution to second order through the method of matched
asymptotic expansions. In the present work, it was shown numerically that for large
times, the vorticity field returns to the drifting Stokes solution and that the only
memory of the initial conditions that remains is the impulse and kinematic viscosity.
Furthermore, we have numerically determined the proportionality constant relat-
ing the dimensionless propagation speed to t=3/2. This constant was later found
analytically by Rott & Cantwell (1987) and agrees with the numerical result to 4
significant digits, indicating that the numerical solution is very accurate.

In this work we show results for the propagation speed, shedding, and inter-
actions, and ultimately the decay of axisymmetric viscous vortex rings from initial
Reynolds numbers as high as 1000. A very accurate numerical method was devel-
oped for three-dimensional flows, and tested for axisymmetric rings. It was shown
that the impulse, which is analytically conserved, is constant during a simulation
to within 2% for even the most difficult case, and more typically to within fractions
of a percent. Therefore, these results may be useful as a database to compare with
other numerical methods under development such as discrete vortex methods which

include the effects of viscosity.

With a numerical method, we are able to obtain eny information from the
flow, making this a very powerful tool (provided that the solutions are correct and
accurate).

1.2 Numerical Method

The complete equations describing the physics are the incompressible Navier-
Stokes equations. Because the Reynolds number is limited by the size of the smallest
scale of the flow which can be resolved, it is desirable to use a numerical approach
which is highly accurate for a given number of degrees of freedom. When properly
formulated, spectral methods are known to have exponential convergence with re-
spect to the number of degrees of freedom and to allow an excellent resolution of
small scales. The objective, therefore, is to develop an efficient spectral method
applicable to vortex ring calculations in an unbounded domain with a quiescent far

field.

Two approaches were considered. The first approach, suggested by Leonard
(1981), uses divergence-free basis functions tailored to inherently satisfy the bound-
ary conditions of the problem. Because of this, the pressure does not appear in the
final equations and the incompressibility condition allows the number of unknown
velocity components to be reduced to two. The second approach considered uses
a complete set of basis functions and enforces continuity (through the expansion
coeflicients) at each time step. In this case, there are four unknowns; three velocity
components and the pressure. The first approach, although more elegant, relies on
finding an appropriate divergence-free set of basis functions, which can be difficult.
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The appropriate set of basis functions is strongly affected by the choice of coor-
dinate system. Cartesian coordinates are mathematically the most simple to work
with and therefore, the obvious first case to consider. An interesting approach for
computing an infinite domain is to first map the domain [—o0,00] to [~1, 1] using
a tangent mapping and then to apply Fourier series expansions (Cain’s mapping,
Cain et al., 1984). With the mapping, an infinite domain can be approximated with
a periodic expansion since the image of the non-zero vorticity is infinitely far away
from the flow of interest. An advantage is that Fourier series expansions can be ap-
plied, allowing FFT’s (fast Fourier transforms) to be used, reducing the operation
count from O(N?) to O(NlogN). Cain’s mapping has been successfully imple-
mented on several occasions in one direction where one or both of the remaining
two directions are assumed to be periodic (Cain et al., 1984, Lowery, 1986). This
approach results in a bandwidth of 5 for each direction for the mass matrix as well
as a Poisson equation with bandwidth of 5 in each direction, each of which must be
inverted to advance one time step. Because the domain of interest is infinite in all
directions, the mapping would be applied three times, resulting in a fully coupled
system of equations which would be extremely costly to invert.

The second coordinate system considered is spherical polar. The advantages
here are that only one direction is infinite, and by holding the azimuthal direction,
¢, fixed we can conveniently represent axisymmetric low with only two dimensions.
With only two dimensions we are able to study more cases. Furthermore, by com-
puting exactly axisymmetric flow, we can compute the instabilities from this state
more precisely. Another advantage here is that a set of functions which comprise a
complete set for a vector field on the surface of a sphere are known, and furthermore
their derivative relations are relatively simple. These are known as vector spherical
harmonics (VSH, Hill 1953). With VSH, it is relatively straightforward to extract
the divergence-free set of functions. Furthermore, because VSH are orthogonal,
the angular directions completely decouple in the linear terms of the Navier-Stokes
equations. To define vector functions for a divergence-free field in a volume, one
must then choose appropriate radial functions. This is the approach taken.

The radial direction is handled by first mapping the semi-infinite domain,
0 <r < oo, to a finite domain, 0 < € < 1, then expanding the velocity and vor-
ticity in terms of Jacobi polynomials. Care is taken to ensure that in the far field,
the velocity decays as 1/r3. Exponential decay in vorticity (occurring when the
vorticity is initially zero outside a finite region) can be approximated, but individ-
ually the basis functions decay algebraically. The resulting matrices in the radial
direction are banded, positive-definite and symmetric, with semi-bandwidths of 3
and 5 for the mass and viscous matrices, respectively. In addition, the functions are
chosen such that the solution is smooth at the origin where there is a coordinate
singularity.

The divergence-free method developed is similar to those of Leonard et al.
(1982) for pipe flow, Moser et al. (1983) for channel flow, and Spalart (1986) for
boundary layers. Special considerations which arise in applying this approach to
the present problem are the unbhounded domain, and the more complex geometry
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of the flow structure. Because of these complexities, two of the three directions
do not allow the use of Fast Fourier Transforms in transforming between real and
wave-number space.

The method is particularly well suited for flows where the activity is concen-
trated in a spherical domain. Vortex rings are representative of an important class
of flows which are produced by a time-dependent point force (Cantwell, 1987). A
delta-function forcing, for example, produces a vortex ring. The numerical method
developed here for this particular flow could be extended to other members of this
class, produced by more complex forcings.

1.3 Objectives

The objectives of this work, divided into numerics and fluid mechanics, are
outlined below.

Objectives: Numerics

(i) To develop an accurate numerical method to study viscous vortex rings in
three-dimensions.

(iz) To verify the method by implementing the axisymmetric case.

Objectives: Fluid Mechanics

(i) To study the large time behavior of axisymmetric rings; in particular, how does
the asymptotic solution of the Navier-Stokes equations depend on the initial
conditions.

(%) To study the early time behavior when the ring is very thin and compare the
propagation speed with the theory by Saffman.

(¢22) To observe intermediate time development of vortex rings such as the defor-
mation of the core, and shedding of vorticity into the wake.

(iv) To provide a database of an accurate solution of the Navier-Stokes equations
representing vortex rings in unbounded domains.

(v) To observe leapfrogging of vortex rings.



Chapter 2
Design of the Numerical Method

In this chapter a spectral method is developed which solves the Navier-Stokes
equations in an unbounded domain with a quiescent far field. There are no exter-
nal forces acting on the flow, however including them would be a straightforward
process. Using a weighted residual method, the momentum equation is projected
onto specified weight functions. The flow field is represented as a summation of
spatially-dependent functions, which form the basis for the solution space, multi-
plied by time-dependent coefficients.

In the method developed here, the weight functions and basis functions are the
same (i.e. Galerkin approximation, cf., Gottlieb and Orszag, 1977). These functions
are built using Vector Spherical Harmonics (VSH) for the angular dependence and
an algebraic mapping together with Jacobi polynomials for the radial dependence.
Using VSH, the set of basis functions is complete, and the divergence-free subset
is extracted. Each basis function individually satisfies continuity, therefore, the
continuity equation is implicitly satisfied in the formulation.

In the first section, we manipulate the conservation equations; first by non-
dimensionalizing, then by transforming to an expanding and translating coordinate
system. The transformation enables vortex rings to be computed over long time
periods while having a minimum impact on the numerical algorithm. Next, we apply
the weighted residual procedure. By using a Galerkin method with divergence-free
basis functions, it is shown that the pressure drops from the equation. Finally, the
basis functions are developed and substituted into the governing equations, leading
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to a set of coupled equations which are solved numerically. With this procedure,
the spatial dependence is accounted for, and the Navier-Stokes equations reduce to
a set of coupled ordinary differential equations which are integrated in time from
an initial flow field.

2.1 Governing Equations

Using the invariant quantities, impulse (I/p) and kinematic viscosity (v), the
Navier-Stokes equations are first expressed in dimensionless form (identified by -(_3)
Next, a transformation is found, such that the boundary conditions at infinity are
unchanged and the changes to the working equations are minimal. Because of this,
the equations are cast in a hybrid coordinate system; the independent variables
are referred to moving coordinates but the pressure and velocity are referred to

non-moving coordinates. The computational variables are identified by ().

2.1.1 Physical and Non-dimensional Equations

The incompressible Navier-Stokes equations express conservation of mass,

V-u=0 (2.1.1)
and conservation of momentum,
9]
—ag +(u-Viu= -—le—l—VVZu (2.1.2)
A p

where u is the velocity, p is the pressure, p is the density, and v is the kinematic
viscosity. Boldface quantities denote vectors. The domain of interest is infinite,
with the vorticity confined to a finite region. It can be shown that, in this instance,
the velocity decays like 1/ in the far field.

With the vorticity defined as w = V x u and the vector identity,
u-Vu=V(u-u/2)~uxw (2.1.3)
equation (2.1.2), can be written as

%—E—V@—uvzu:uxw, (2.1.4)

where ® =p/p + u-u/2 is the total pressure.



2.1 Governing Equations ‘ ’ : 9

The dimensions of the impulse (I/p), and the kinematic viscosity (v ), are L*/T
and L?/T, respectively. By inspection, a length scale is formed, (I/p)*/?/v1/2 and
a time scale, (I/p) /v?. With this, the dimensionless variables are

1/2
o wea "
'S(‘-Ex————I/ e v3/2
e 5w 12 (2.15)
t=t —
I _ I
/p pEp/p—;/ge.

Substituting equation (2.1.5) into equation (2.1.4) gives the dimensionless momen-
tum equation,

%+V6—V2ﬁ=ﬁxw, (2.1.6)
where ® =P + 0 /2. Continuity becomes
V-u=0. (2.1.7)

2.1.2 Transformed Equations

Since the domain of interest is infinite and we are studying vortex rings that
are diffusing and translating in time, it is helpful to express the governing equations
in a coordinate system which is also expanding and translating. In this way, we are
able to efficiently compute flows from an initial state, such as a thin ring at high
Reynolds number, for long periods of time.

A transformation is found which leaves the boundary conditions invariant and
has a minimal impact on the algorithm. It is a hybrid transformation, where the ve-
locity and pressure are referred to fixed coordinates while the independent variables
are referred to a translating reference frame, given by

~ _—=71/2
%= (x-X)I"2, u=uil
~ - w=wt, (2.1.8)
t =lInt, - -

p=pt.

Here, X is the displacement of the center of the coordinate system as a function of

time. The expansion is prescribed proportional to /% because this is the variation
of the viscous length scale. However, the origin of 7 is arbitrary and will be chosen
carefully in each case. Similarly, X is left unspecified for now and will be adjusted
to minimize the time dependence of the solution in the transformed frame. Note
that the reference frame moving with X does not have to be inertial.



2.2 Weighted Residual Method 10

Appendix A shows the details of the transformation. The final equations in
the new coordinates express conservation of momentum,
U =~ =9 . ~
—52—.+V(I>—-V2u=umodxw (219)

and conservation of mass,

~

V-i=o. (2.1.10)

Equation (2.1.9) has the same form as equation (2.1.4) except that the pressure and
the non-linear terms are modified. They are given by

- ~ 1. =
umod‘—;u—§x——U
~ L~ 1. . =~
‘I>Ep+u~u/2——§x-u—U~u (2.1.11)
T=12g =712 9%

dt

For reasons to be described shortly, the pressure does not appear in the final
equations, so that the only effect on the algorithm is due to the modified velocity in
the non-linear term; W becomes U,,,4 each time the non-linear term is computed
(see Chapter 3 for more detail). To simplify the notation, we will present the
solution procedure of equation (2.1.4), even though equation (2.1.9) is solved in
practice. The differences are minor: v becomes 1 and the velocity in the convection
term is replaced by Umoeq.

2.2 Weighted Residual Method

In a weighted residual method, the governing equations are multiplied by a set
of weight functions, ¥;, and integrated over the domain of interest. This gives

Ju

<E,\Ifj>+<V<I>,\Ifj>—y<V2u,\I!j>:<u><w,\I/J-> (2.2.1)

where < a,b >, an inner product, denotes the integral of the dot product of two
vectors, a and b, over the volume. All of the quantities will decay fast enough at
large distances for the integrals over the infinite domain to be finite.

By specifying certain constraints on the weight functions, ¥ ;, the pressure term
will drop from the governing equations, greatly simplifying the numerical method.
Using the product rule and Green’s Theorem, the second term in equation (2.2.1)
becomes

<V, T, >=/<I>(\I!j-n)d5—/ B(V - ;)dV. (2.2.2
S |4
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In Leonards’ formulation (1982), the domain was bounded by pipe walls. The
normal component of the basis functions is therefore zero at the boundaries, and
the wall boundaries don’t contribute to the first term in equation (2.2.2). The
streamwise direction was periodic, and therefore had no contribution, hence the
first term is zero. Since our domain is infinite, extra care is needed. The first term
is zero when the integrand, ®(¥; - n), decays fast enough such that the limit of
the integral as S becomes infinitely large is zero. Since ® decays like 1/r? and
¥; decays like 1/r3, this is clearly the case. The second term is zero for weight
functions which are divergencefree (V- W; =0). The weight functions, therefore,
are chosen such that they satisfy continuity and the boundary conditions, leading
to the so called weak formulation due to Leray (1934):

< %‘?,‘I’j >—v <V, ¥ >=<uxw¥;>. (2.2.3)
For the Stokes equations, it can be shown (Moser et al., 1984) that the solution of
the strong form (eqn. 2.1.4) is also a solution of the weak form (eqn. 2.2.2) and
that the solution of the weak form is unique. Therefore, it is valid to solve the weak
form of the equations, and a solution of the strong form will be found (if it exists).
It is also true that the weak form of the equations may have a solution when the
strong form does not. But, there are no firm examples of such a behavior with the
incompressible Navier-Stokes equations.

The next step in the formulation is to expand the velocity and vorticity in
terms of unknown time-dependent coefficients, a;(t), multiplying known spatial-
dependent basis functions, ¥;(x):

u= Zaj(t) W (x) (2.2.4)

where each basis function is divergence-free. Equation (2.2.4) is substituted into
(2.2.3), the time-dependence is brought outside of the integrals, and inside the
integral are expressions involving products of weight functions. In the integrand,
there are two indices (j and j' for example) such that each integral is an element
of 2 matrix. Furthermore, the integrals (or matrix elements) are dependent only’
on the spatial functions which are known a priori, and therefore only need to be
computed once. The matrix multiplying the time-dependent term will be called the
mass matrix and that originating from the diffusion term will be referred to as the
viscous matrix.

If we constrain the basis functions and weight functions to span the same space
(i.e. a Galerkin method), several benefits are realized. It can be shown that the
solution gives a minimum in the L, error in the vorticity. Furthermore, the conver-
gence properties of the numerical approximation to the differential equations are as
good as the convergence of the series expansion to typical solutions (approximation
theory) (Moser et al.,, 1984). Also, when the weight functions and basis functions
are the same, the mass and viscous matrices are positive-definite and symmetric,
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6=n/2 __\‘y ——— ¢=0 plane

Figure 2.1. Schematic of a vortex ring is spherical coordinates. The
domain is infinite, where 0 < r < 00, 0 € § < 7, and
0 € ¢ < 27w. The cross section indicates lines of constant
vorticity.

leading to a more efficient numerical method. This approach, used by Spalart
(1986) to simulate turbulent boundary layers, was also used here. Choosing basis
functions which are appropriate for computing vortex rings and their interactions
in an unbounded domain is the subject of the remainder of the Chapter.

2.3 Three-Dimensional Basis Functions

The basis functions must not only be complete for a given set of endpoint con-
ditions and divergence-free, they should also lead to an efficient numerical method.
One measure of the numerical efficiency is the sparseness and bandedness of the
matrices resulting from the linear terms (on the left hand side of eqn. 2.2.3). Ide-
ally, the basis functions would be orthogonal (bandwidth of one) in all three spatial
coordinates. In practice, this is probably impossible to achieve simply by a judicious
choice of functions.

Our problem is formulated in spherical polar coordinates (see Fig. 2.1) which
offers several advantages. Vector spherical harmonics (VSH, cf., Hill, 1953), can be
used as basis functions in the angular directions. They span the space of vector



2.3 Three-Dimensional Basis Functions - © 13

fields on the surface of a sphere. A complete set of functions in a volume is gen-
erated by multiplying the VSH by appropriate radial functions. Furthermore, the
divergence-free subspace can be easily extracted using the properties of the VSH
(Appendix C). Finally, because of the orthogonality of VSH, the different angular
modes are completely decoupled in the linear terms of the Navier-Stokes equations.
With these, the only remaining task is to choose the radial functions.

The radial direction is mapped from the semi-infinite domain, 0 < r < 00, to
a finite domain, 0 < ¢ < 1, then the velocity and vorticity are expanded in terms
of Jacobi polynomials. Care is taken such that in the far field, the velocity decays
as 1/r®. Exponential decay in vorticity can be approximated, but individually the
basis functions decay algebraically. In addition, the functions must satisfy special
conditions at the origin where there is a coordinate singularity.

2.3.1 Vector Spherical Harmonics

The coordinate system plays a vital role in the method. With this, the vector
field (velocity or vorticity) is projected onto each of the coordinate directions and
each component is expanded in terms of a family of complete polynomials. The co-
ordinate system determines the boundary conditions in each direction which in turn
determines the appropriate functions to use. Furthermore, the higher-resolution re-
gion of the approximating functions should coincide with the large gradients in the
flow field. Finally, it is useful if a subset of the basis functions is consistent with the
physics of the flow (i.e. by removing one coordinate the 2D or axisymmetric flow is
recovered exactly).

For this problem, we chose spherical polar coordinates (see Fig. 1). By holding
¢ constant, the three-dimensional problem reduces exactly to the axisymmetric
problem. This will be important for future studies of azimuthal instabilities and is
a definite advantage over Cartesian coordinates. In addition, it is desirable that only
one direction (radial) be infinite since special care is needed in an infinite interval,
making this an advantage over cylindrical coordinates. Finally, the availability of
VSH and their properties enables a complete, divergence-free set of basis functions
to be defined analytically without excessive complexity. Furthermore, with VSH the
matrices from the time-dependent and viscous terms in the Navier-Stokes equations
are diagonal in the polar and azimuthal directions. In this section, these properties
are illustrated and the basis functions are developed.

Since the vector spherical harmonics, X¢m, Vim, and Wy, , form a complete
set on a sphere (Blatt & Weisskopf, 1952), an arbitrary, unsteady, three-dimensional
vector field can be represented by

u(r,8,6,8) = > {Fi,,.(r,)Xem(6, 6)
£m (231)
+ F2 (1) Vem (6, 8) + Fs,, (1, ) Wem(6, 6) ).

The scalar functions, Fy,,., F3,,., and F3,_, are arbitrary radial functions which
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vary in time. In numerical solutions, the series is truncated with 1 < ¢ < L and
0 < |m| < £ where the limit, L, is set according to the complexity of the flow field
(i-e. the ratio of length scales which depends on the Reynolds number).

The divergence-free subspace is extracted from the complete space by substitut-
ing equation (2.3.1) into the continuity equation, and applying VSH properties (see
Appendix B). This gives a velocity expansion requiring only two scalar functions,
F, (r,t) and Fj} (r,t), instead of three: :

u(r,6,6,8) =Y {Fp(r,t)Xem(8,6) + V x [Ff(r,)Xem(8,8)]} . (2.3.2)

{Lm

The functions denoted by + and — are related to those denoted by 1, 2, and 3 as
follows:

Fllm = Fljn
dFf ¢

F,,. =k [_d_-:“ - ;Fl_ir-n] (2.3.3)
dF;t £+1

F3‘m Ekg [ d:‘m +( r )Fl-i_n]

where k1 = i(557)"/?, and k» = i(F4)2. The + and — notation is that
used by Leonard and Wray (1982). This procedure amounts to using a vector
potential. That is, since a divergence-free vector can be written as the curl of
another vector, the basis functions in equation (2.3.2) can be expressed as V x Y~
and V x Y, where X~ and X7 are the vector potentials. In two dimensions, the

vector potential simply reduces to the stream function.

Until this point, the functions denoted by F included both the spatial varia-
tion in the radial direction and the time-dependence. These two dependences are
now separated by expanding the radial functions in terms of polynomials. If these
are properly chosen (solutions of a singular Sturm-Liouville problem) the expan-
sion is complete and able to represent arbitrary behavior at the endpoints without
exhibiting Gibbs phenomena (Gottlieb & Orszag, 1977). The particular choice of
radial functions is described in the next section, but for the moment they are rep-
resented by f.,(r) and fI,(r) where n is the third index in our expansion. Note
that these functions do not depend on the index m (thanks to some properties of
the VSH) which simplified the method significantly. The time-dependence is ex-
pressed by unknown time-dependent coefficients, a_,, (t) and a}, (t). The radial
and time-dependence are then separated:

N(®)
Ep(r,t) = Z ot (2) Fra(T)

n=0 )
e (2.3.4)

Frt)y =" at, () f}(r)

n=0
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The expansion for the velocity becomes

U(r,0,6,8) = 3 {07 () flr)Xem(8,8) + G om (DY X [ XK (6, 4)]}

¢,n,m

(2.3.5)

where 1 <¢< L, 0<n < N({),and 0 <m < £. Furthermore, N()=N(1)—£+1

and N(1) = N (see section 3.2). As discussed in the previous section, the weight

functions and basis functions are the same. Therefore, the weight functions are

simply,

‘I,_/ r ! — _/ /X 'm’,

mem Fure o (2.3.6)

\I'n’l'm' =V x (fn’l’xl'm')’

We are now in a position to derive the final equations. Note that the radial

functions are still arbitrary. The resulting equations will involve integrals of radial

functions, and these functions will be chosen so that as few of these integrals as
possible are nonzero.

Substituting equation (2.3.5) into equation (2.2.3), and using the orthogonality
of VSH, we can show that the angular modes are orthogonal in the mass and viscous
term (all the integrals are zero unless £ = £',m = m'). In practice, this means that
the two angular directions are completely decoupled for the linear terms in the
Navier-Stokes equations. The result is two sets of ordinary differential equations

for each of the indices, | and m, with dependent variables a_,, and a:._lm' In
summation notation they read,
- da’;fm - - ad * lvd
'An'n(e)_dt—— - VBn’n(E)anlm =<uXw, fn’( le > (23 {)
+ da;tem + + + xx 9
An,n(f)T —vB () ay,. =<uxw,Vx(ff,X;.) > (2.3.8)

where X7, is the complex conjugate of Xm. The matrix elements of A, and
By ar, in terms of the radial basis functions, are given by

A0 = '/(; ook rzdr,

B0= [ L) foertdr,
(2.3.9)

A0 = / [fonefo,,, + Fsnefa,,] T2dr,
0

Bra(t)= / [Lev1(fou) fo,n + Lea(Fsn Vs, ] r2dr
0

They are real, independent of m, and symmetric. This is so because the Laplacian
2
operator, L¢(f) = —Z—;é 24 _ L6:-_:——1-)-f, (see VSH, Appendix C) is self-adjoint with

r dr
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respect to the measure 2 dr. Furthermore, Ap/, is positive definite and B/, is
negative definite. The definitions of f;,, and f3,,, in terms of a single function,
£, follow from equation (2.3.3):

r

fa, (r) =1 (221 1)1/2 [dii - f] ) (2.3.10)

fan (r) =1 (22111)1/2 [Z;'lr" + (Eil)} R (2.3.11)

Once the radial basis functions ( f, and f:’z) have been chosen, the matrix elements
are evaluated. In the next section, these radial functions are chosen judiciously to
minimize the radial coupling while still satisfying the boundary conditions.

2.3.2 Radial Functions

There are many constraints driving the choice of the radial functions. They
must form a complete set and satisfy the boundary conditions. At the coordinate
singularity, r = 0, the basis functions must be smooth ( Cs, ), implying in particular
that they have the correct parity. The basis functions should be suitable for ap-
proximating typical functions, in other words, the collocation points should cluster
in regions of large gradients. In order for three-dimensional flows to be studied, it
is important that the number of operations per time-step be kept to a minimum.
This is dependent primarily on the matrix structures (i.e. diagonal is optimal) and
the availability of fast transforms (i.e. as FFT’s). Because these constraints are
not applied serially, rather, they are applied in parallel, it is easier to first state the
result and then evaluate the merits.

An algebraic mapping is used, given by

2
2 1§
= .3.12
combined with expansions of the form,
fa=fh=a-0" e ale, (2.3.13)

where G¥ are Jacobi polynomials, defined in Appendix C, and + and — functions
are the same (and called simply fn,). Equation (2.3.12) maps the semi-infinite
domain, 0 < r < oo, to the finite domain 0 < ¢ < 1. The mapping could be
specified in terms of r? because the parity of each radial function is known. This
mapping (eqn. 2.3.12) has the advantage of alleviating the unnecessary clustering
of collocation points near the origin of the spherical coordinates. The constant, r;,
is a free parameter, chosen to minimize the error in the vorticity for a given initial
condition. When the resolution is marginal, it is recommended that r; be varied
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by +£10% and the results compared to assure that the solution is not sensitive to
this parameter.

Completeness is guaranteed by choosing a set of polynomials which are solu-
tions of a Sturm-Liouville problem (Gottlieb & Orszag, 1977). Furthermore, if the
eigenfunctions are solutions of a singular Sturm-Liouville problem, convergence is
faster than any power of N (exponential) when approximating an infinitely differ-
entiable function (C ) with arbitrary boundary conditions. Laguerre polynomials,
defined in a semi-infinite domain, are a possible choice. They are solutions of a
singular Sturm-Liouville problem, although their convergence to a function of given
complexity requires roughly twice as many polynomials as Legendre and Chebychev
polynomials (Gottlieb & Orszag, pg. 42). Therefore, it is better to map the radial
coordinate to a finite domain and then, in the mapped domain, expand the solution
in terms of Jacobi polynomials (similar to Legendre and Chebychev).

The far-field is the only boundary in the problem. The vorticity is assumed to be
essentially confined to a finite domain, hence, in the far-field it decays exponentially.
This corresponds to a 1/r3 decay in the velocity (Batchelor, 1967). This behavior
is enforced by the factor (1 — €)P, through the exponent, p. To find the correct p,
we first consider the + modes. The function, fy, is the radial dependence of the
vector potential. Therefore, to determine the correct behavior of f, at infinity,
consider the Poisson equation relating the vector potential to the vorticity,

V2 (Fae(r) Xem(6, 6)) = —w* (2.3.14)

Using VSH properties for the Laplacian, and assuming that the vorticity is of the
form, w ~ 1?1 Xm(0, ¢), where q is a large negative exponent (theoretically infinite),
equation (2.3.14) becomes

Ly(fne) = _—Lq—d— r"u—(—i—(r”'l )l =0¢9 (2.3.15)
T dr dr

which has a solution of the form,
fae = C1r ) L 0y et + O(r11?) (2.3.16)

where € and C, are constants, determined by the boundary conditions. Since the
solution is bounded at infinity, C, is zero. Therefore, the leading term at infinity
is Crr=(+D | At a large radius, (1 —€) ~772, £ ~ 1, and G% ~ 1, therefore, for
the correct decay

_(L+1)
T2

With this choice, each of the velocity basis functions decays like 1/r® or faster. The
vorticity basis functions also decay algebraically, like 1/r5 or faster, and collectively
they will approximate exponential decay. A similar argument for the — modes
shows that the same factor, (1 — &)(¢*1/2 must multiply the Jacobi polynomials
in order to satisfy the far field boundary conditions.

p (2.3.17)
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At the origin, we must concern ourselves with the coordinate singularity asso-
ciated with spherical polar coordinates. In spherical coordinates it is possible to
specify the radial dependence of a function in such a way that it is a smooth func-
tion of 7, §, and ¢, but not a smooth function of z, y, and z. This occurs because
the metric coefficients of the mapping tend to infinity. Therefore, for smoothness,
certain constraints are imposed on the radial basis functions. To illustrate this
point, consider a simple example. Suppose we have a function, g¢(r,8), in polar
coordinates, which is a product:

g(r,6) = R(r) ©(8) (2.3.18)

Now let R =1 and © = cosf. It is clear that this function is discontinuous by
plotting it along the z axis: if ¢ <0, then g =1, and if £ > 0, then ¢ = —1. Now
choose R = r, and the function, g, is smooth.

"The appropriate constraints on the radial functions when using vector spherical
harmonics, derived by Spalart (1988) and summarized in Appendix D, are given by

fllm(r) =rt thm(rz)
Foum () = 4 frpm(r?) (2.3.19)

Fom () =777 fivem(r?)

These are found by requiring that the vector function be infinitely differentiable
near the origin and counting the associated degrees of freedom and constraints,
thereby proving necessary and sufficient constraints shown in equation (2.3.19).
Here the functions fxem, fvem, and fwen are themselves infinitely differentiable
and bounded for [0, c0]. Note that (2.3.19) dictates both the parity of f;, fo, and
f3 and their rate of decay as r — 0 (fast decay for large £).

This analysis is reinforced by the earlier results derived by Cantwell (private
communication) where the self-similar solutions of the three-dimensional Stokes
equations for the vector vorticity, %‘ti = V2w (in spherical polar coordinates), are
derived. The angular dependence is described by vector spherical harmonics, while
the radial dependence involves associated Laguerre functions (Laguerre polynomials
multiplied by decaying exponentials). Cantwell’s radial functions give the following
limiting behavior, as r — 0, for each of the components of vector potential, Y
velocity, and vorticity:

T~ Y+ u- ut w™ wTt
iy rt-1 0 0 ri-1 ré-1 0
59 rf—] ,rl ,rl 7.l—l ,rl-—l ,,.8
i pe-1 rt N pt-1 pt-1 t

The general result (equation 2.3.19) is in agreement with the behavior of the
Stokes solutions. In practice, the constraints at the origin are imposed by including
a factor £°/2 in the radial basis functions, fn¢, and choosing an algebraic mapping
in terms of r?. In doing this, the parity requirements are also satisfied.
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In summary, the correct behavior in the far field and near the origin is repre-
sented with the algebraic mapping of equation (2.3.12) and the factors, £¢/2 and
(1 — &)+D/2 in equation (2.3.13). This form has the drawback that the radial
functions depend on £. A careful adjustment of the asymptotic behavior, however,
ensures that all the degrees of freedom are useful in resolving the solution. An ad-
ditional advantage is that more of the improper integrals (over the infinite domain,
e.g. the impulse and kinetic energy) will be convergent and have meaningful, finite
values.

Numerical efficiency depends on both the number of terms required to represent
a typical solution, the length of the time steps that can be taken, and the number
of operations required to advance the solution one time step. With VSH, the linear
terms are completely uncoupled (orthogonal) in the two angular directions. When
the basis functions and the weight functions are the same, the matrices resulting
from the radial direction (eqn 2.3.9) are symmetric and positive-definite (section
3.4). With our choice of mapping and radial functions they are also banded, where
the number of non-zero elements above the diagonal is 3 and 5, respectively (for
every m and £). Bandedness is important not only for efficiency in solving the linear
terms in the final set of coupled ODE’s but perhaps more importantly, to minimize
the round-off error which could ultimately corrupt the solution when many terms are
used. In the process of developing the method, several alternatives were considered
where these matrices were full, which led to poorly conditioned matrices even at
moderate values of L and N.

The azimuthal coordinate is the only direction employing the FFT, in contrast
to similar spectral methods where typically two of the three directions are Fourier.
The operation count in transforming to and from wave-space for large N is O(IV?).
In comparison to other three-dimensional spectral methods using FFT’s in two
directions and a “slow” transform in the third one (Leonard et al., 1982, Spalart,
1986), the present approach is slower by a factor of two, (not an order of magnitude,
as it might first appear). This is acceptable for three-dimensional computations.



Chapter 3

Numerical Procedure

In the previous chapter, the incompressible Navier-Stokes equations were cast
as a set of coupled ordinary differential equations. By using spherical polar coor-
dinates, and considering only the m = 0 modes, the three-dimensional problem
reduces to the axisymmetric problem exactly. This axisymmetric problem was im-
plemented in FORTRAN to run on the CRAY-XMP computer. This chapter dis-
cusses the practical aspects of solving these equations including time advancement,
transforms to and from wave-space, Cholesky decomposition and its use, aliasing,
and initial conditions. :

The axisymmetric basis functions are extracted from the three-dimensional
functions by setting m = 0 (axisymmetric flow) and imposing ug = 0 (no swirl
velocity) in the velocity expansion (eqn. 2.3.5). One finds that the axisymmetric
solution is described by the + modes alone (eqn. 2.3.8). From this point forward,
we will only discuss the axisymmetric problem, so the 4 symbol is dropped and m
is set to zero, simplifying the notation (i.e. ajem = ape, f:l = fne, ‘Il:’fm =Wy,
etc.).
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3.1 Time Advancement Schemes

- In Chapter 2, the complete equations were derived for the three-dimensional
problem. Assuming the flow is axisymmetric, these simplify to the equations gov-
erning the 4+ modes:

dane

" n(f) - VBn'n(z) Ane = Qn’(g) (311)

where Q. (¢) =< uxw,Vx (f:',lX[m) >. This is a set of N(£)x N(£) equations for
each £. Throughout this work, the matrices, Ann(€) and Bynin(£), are referred to
as the mass and viscous matrix, respectively. The vector representing the non-linear
term, Qn/(€), acts as a forcing to the linear equation, and is integrated explicitly
in time using Adams-Bashforth (AB), a second-order scheme.

Applying an explicit solver for the viscous term in a non-Fourier spectral
method severely limits the maximum step size allowed by the stability criterion.
An example of this is the solution of the heat equation between two walls using a
Chebyshev-spectral method (Gottlieb and Orszag, pg. 115); for this problem, the
stability limit gives At = O(1/N*) as N — co. It is important, therefore, that the
viscous term be treated implicitly for non-Fourier expansions. Because the semi-
bandwidth of the mass matrix is 3 and that of the viscous matrix is 5, and the mass
matrix needs to be inverted anyway, an implicit scheme for the viscous term brings
only a moderate penalty over an explicit scheme (Leonard and Wray, 1982). The
Crank-Nicolson scheme, used to integrate the viscous term, is also second-order
accurate in time. Therefore, the overall time-integration scheme is second-order
accurate.

The time-differenced form of equation (3.1.1) is thus:

ot -—af; J+1+a 3 1
An’n(g) ("—Ti&_—_—é) = Bn'n(g) (_____2__711 + —Q.:‘I( - 5@11; (3.12)

.7+

where j indicates the time level: ¢ = jA¢. Defining Ad’ e = ay aie, equation

(3.1.2) may be written in “delta form” as:
Al (O Ad, =Bl (0d, - (3Q,,— Qi) At (3.1.3)
where Al, (£) = ~[2 Awn(€) — At Bpn(£)] and Bl () = =2 At Boin(0).

Two codes are used to solve these equations. The first code, IC, takes an initial
condition, the velocity or vorticity field at an instant in time, and computes the
coefficients of the spectral expansion. Using these coefficients, the second program,
NG, integrates the coupled set of ODE’s (eqn. 3.1.3) forward in time from the initial
state.

In NS, the mass and v1scous matrices are computed once and stored. With this,
the matrices Af ,(0) and B o) are then computed and stored in place of A,,(?)

and B,n(¢). Next, the 1mp11c1t matrix, An 2(0), 1s decomposed with the Cholesky
method and xeplaced with its decomposed form. The matrices are symmetric and
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banded, requiring a total storage space of 6 NL each. The time integration proceeds
as follows:

(a) Using afw, compute Qfl, ¢ for all n’ and £ (by a pseudospectral method)
(b) For each £, compute B;‘l,n(f)afd and add it to —(3Qfl,[ - Qf;,_ll)At.
(c) For every £, multiply through by [Al:,n(f)]"l to obtain Aaie, hence afjl .

(d) Save Qi, . in place of Q{l,—el .

(e) Advance in time, save afjl 1

0> and return to (a).

in array a

The following sections more carefully describe these steps; transforming to and
from wave space (section 3.3), forming the mass and viscous matrix elements (sec-

tion 3.4), inverting AI‘,n(E) using Cholesky decomposition (section 3.5), computing
the non-linear term (section 3.6), and starting the initial conditions (section 3.7).

3.2 Axisymmetric Basis Functions

The velocity expansion for axisymmetric flow is given by

L N(9)
u = Z Z anece V X (fneXe)
=1 n=0 (3.2.1)
L N L N@®
=3 > antct(fon Vet 5, W) =D > e Wy
=1 n=0 {=1 n=0
: . . [ame(er1)]/?

where a constant has been inserted for convenience, ¢, = —1 [ oY } . The

radial basis functions are specified through the mapping,

2
2 ri &
= 2.2
r T ¢ (3.2.2)
and the radial function,
fae = (1= DR GL(6). (3.2.3)

Recall that f, , and f;_, are related to f,, by

/e N\Yrd e
f?nf—Z(ze 1> [37';} Jne

+
1/2
o= (.@+1> [i+(e+1)] i
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Jacobi polynomials, denoted by G¢(£), are polynomials of order n. Their definition
is modified from that of Abramowitz and Stegun (1972, eqn. 22.2.2) as follows: from
the notation of A&S, start with shifted Jacobi polynomials, G,(p, ¢, ), normalize
them such that hn =1 (i.e., orthonormal polynomials), and set p and g equal to
2¢ —1 and £ —  (note that p and ¢ used here are not related to the notation of
Chapter 2). The choices of p and ¢ were determined by constraining the matrices,
A and B, to be banded. Note that if we had a scalar field and did not apply the
operators (2.3.10) and (2.3.11), and L, the matrix would be diagonal.

The components of the basis functions for the velocity reduce to:

fn@( ) 0
) ) ane | Ynro | =, ) ane(t) | 14 = (r f,,,(r)) P}Hy)
u £=1 n=0 ] {=1 n=0
¢ nég O

(3.2.5)
by substituting ¢, and the definitions for V, and W, (Appendix C) into equation
(3.2.1), and simplifying. The functions PJ(u) and P}(u) are the associated Legen-
dre functions, P;/*(u) (Arfken, 1985), where m = 0 and m = 1, respectively, and
p = cos §. Their properties are summarized in Appendix C.

The vorticity only has its azimuthal component:

L N()
Wy = (V X u)¢ = Z Z Ane Ce [V xV % (fngX[)]¢ (3.2.6)

£=1 n=0

Applying the definitions of ¢, and X, (Appendix C), and assuming axisymmetric
flow without swirl, equation (3.2.6) reduces to

L N(9

w5 =33 anelt) PH(n) Le(fuelr)) (3:2.7)

£=1 n=0

Recall that the definition of the operator, L,, from Chapter 2 is

2 2d e(e+1)

Le(fne) = [”—— T I T 2 fne (3.2.8)

From equation (3.2.5), the radial dependence of the velocity components are
given by fne(r)/r. This can be expressed as a polynomial in £ of order n +£+ 3.
For efficiency (i.e. so that we don’t carrying useless degrees of freedom), we choose
N(£) so that each expansion is the same order in ¢ for every £. Therefore, by using
a constant and sufficient number of collocation points, integrals of products of the
functions (as in computing the nonlinear term) will be exact for every £. The result

s N(1)+14+1=NE)+C+3, 0or N(O)=N1)—€+1.
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3.3 Transforming To/From Wave-Space

Transforming from real-space to wave-space, given the coefficients of the basis
functions, is done by evaluating summations at a finite number of grid or collocation
points, r; and ;, where ¢ = 1,...,N; and j = 1,...,L.. Transforming to wave-
space from real-space involves numerical evaluation of definite integrals where the
integrands are known at the collocation points. Two such examples are evaluating
the non-linear terms, Q./(¢), and finding the expansion coefficients for an initial
condition. This section discusses the theory and practice of transforming to and
from wave-space for orthogonal functions.

Like the matrices, the basis functions (evaluated at each collocation point) are
computed once and stored. The radial basis functions corresponding to u,, ug, and
wg are

GR(n,E,i) = [(2 + 1) fnl(éi)

Ty
GTH(n,¢,1) = 1 d i fre(&i
(TL, 72) = ;; g(r: nl( z))
GV(”:£7 Z) = Lf(fnl(éi))
where §; is the 7** grid point in the mapped radial coordinate, £. The polar basis
functions are _ .
PO(¢,5) = P (ps)
P1(£,5) = Pf(p;)

and y; is the j** grid point in the polar direction where [ =cosf.

(3.3.1)

(3.3.2)

Before evaluating equations (3.3.1), the derivatives are replaced with sums of
the neighboring Jacobi polynomials (i.e. Gf,; and G_,, cf., Appendix B). The
derivatives in equation (3.3.1) could either be evaluated numerically or computed
analytically. It is preferable to compute them analytically in order to reduce the
round-off error (see section 3.5). Due to the mapping, the second derivatives in
L,, and the complicated recurrence relations of the two parameter family of Jacobi
polynomials, the algebra is quite involved. By hand, it would be extremely tedious
and time consuming. With the aid of a symbolic algebra program, MACSYMA,
this task is greatly simplified, but is still a major effort. MACSYMA is also used
to analytically compute the elements of the mass and viscous matrices in equations

(3.4.1) and (3.4.3).
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The transforms in vorticity and velocity in terms of the stored arrays are given
by
L N(§
ur(ri,0;) = Z ane GR(n,£,3) PO(L, 7)
{=1 n=1
L N©®
ug(ri,0;) = > ane GTH(n,,i) P1(4,5) (3.3.3)
=1 n=1
L N
we(rin6;) =D Y anGV(n,4,i) P1(¢,5)

£=1 n=1

Assuming L. = N,, it appears at a first glance, that O(N?) operations are required
to evaluate equations (3.3.3). The operation count is reduced to O(N?2) because
the G functions do not depend on j and the P functions do not depend on i, as
shown in figure G.3. Ordering the loops in this way, also turns out to be well suited
for vector processing on the CRAY-XMP.

We wish to evaluate the integral of a function, g(z) over the interval [a, b] using
Gauss quadrature. We begin by writing g(z) as the product of a new function,
P(z), and a specified weight function, w(z) (determined by the interval [a,d]). For
example, in Gauss-Laguerre quadrature, the weight function is e~* and the interval
is [0,00]. The definite integral is then approximated as a discrete sum by

b b N
/ g(z)dz = / P(z)w(r)dr ~ Z P(zx;) A; (3.3.4)

where A; are the weights (not to be confused with the weight functions, w(z)),
and z; are the collocation points. The degrees of freedom are A4;, and z;, where
t=1,...,N,, totaling 2 N. (Appendix E). If the function P(z) in equation (3.3.4)
is a polynomial of order 2N. — 1 (the space of such polynomials also has dimension
2N.), then the discrete sum describing the integral is exact (to within machine
precision) with N, collocation points.

The power of Gauss quadrature together with spectral methods, is that we can
often integrate expressions exactly by using Gauss- type quadrature rules which are
compat1ble with our expansion functions.

3.4 Forming the Mass and Viscous Matrices

The mass and viscous matrices result from the coupling of the radial modes.
Because they are not time-dependent, they can be computed once and stored. This
section will discuss the properties of the matrices and the method used to compute
them.
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In Chapter 2, we developed the mass and viscous matrices,

Apn(l) = [)oo [fi’nzf?,,u + f3"lf3n’l] r2dr (3.4.1)

Bnin(€) = /(; [Les1(fone) f2, + Le-1(fsne ) fs,., ] rPdr (3.4.2)

which are functions of the radial functions, fn¢, and mapping, £(r). These were
chosen such that A and B have semi-bandwidths of 3 and 5, respectively. With
banded matrices, the operations count per time step is much lower; there is also
less round-off error (see section 3.5).

It is clear from equation (3.4.1) that A is symmetric and positive-definite,
however, this is not as clear for equation (3.4.2). Before evaluating the viscous
matrix, it is first simplified by integrating by parts. The result,

[ee) d d , oo
Bua®) =—{ [ Lot Lot a0 0 42) [ fon
0 0

b df3n£ df3n’l 2 =
+\/.; -—(1-7—‘—— '—Cl—r—'—r dT+£(€“1)A f3nlf3n'ldr

is clearly symmetric and negative-definite. As mentioned earlier, L, is self-adjoint.
This form (eqn. 3.4.3) is preferred from a computational standpoint since the order
of the derivatives is reduced by one. Again, MACSYMA, was used here.

MACSYMA is a high level programming language. It symbolically manipulates
expressions, and has an extensive library of algorithms which, among other things,
evaluates derivatives and integrals. One can either interactively enter commands to
the program, or submit a list of commands in the form of a batch job. The program,
written in LISP, is recursive in nature, and therefore, even for moderate problems
can quickly use very large fractions of the disk space of a VAX 11-780. Much of the
difficulty encountered was due to running out of disk space.

(3.4.3)

The end result, the diagonal and off-diagonal expressions as a function on n
and £, are written directly in FORTRAN (by MACSYMA). A single expression is
up to 15 lines long, giving an idea of the complexity of the algebra. The MACSYMA
codes are described and listed in Appendix G.

3.5 A Few Words About Stiffness

In a viscous flow, the ratio of largest to smallest length scales is a function of the
Reynolds number of the flow. This, in turn, is reflected in the ratio of the largest
to the smallest eigenvalues of the matrices. As the ratio of eigenvalues becomes
large, the time integration becomes increasingly difficult. This behavior is what we
call stiffness. By using implicit time advancement for the viscous term, we have
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helped to alleviate some of the problem. The stability limit for the time step is
not as severe as it otherwise would be, although we still must contend with round-
off errors. Round-off error comes from several sources — from forming the matrix
elements, and from advancing the solution in time, in particular it is a function of
the number of operations per time step. Several steps are taken to keep these errors
to a minimum.

The number of operations per time step is determined largely by the matrix
structure of the system being solved. For example, a full matrix requires O(N?3)
operations initially and O(N?) at each time step, while a banded matrix requires
O(m?N) operations, where m is the number of non-zero elements above the di-
agonal. For the problem at hand, the matrix structure is even more specialized —
it’s banded, symmetric and positive-definite — leading to even greater savings. The
algorithm which exploits this particular matrix form is called Cholesky decomposi-
tion (see Golub & van Loan, 1984). The round-off error of this algorithm has been
studied rigorously by Wilkinson (1968) and shown to be very low.

An important consideration, therefore, in forming a numerical method is to
consider the conditioning of the system of equations which are solved. Minimizing
the number of operations not only helps the efficiency but also the round-off error.
By choosing weight functions to be the same as the basis functions, the resulting
matrices are positive-definite and symmetric. It is also very helpful to minimize the
bandwidth of the matrices by careful choice of the basis functions.

Round-off error also enters the problem in computing the matrix elements.
Again, using MACSYMA, the analytic expressions for the elements were found.
The result is an expression for the diagonal, and off-diagonals, in terms of n and
£. These expressions are evaluated once and stored, so it is not a large penalty to
evaluate them in double precision, and store them in single precision, thus obtaining
the correct result to every significant digit.

3.6 Computing the Non-Linear Term

From equation (2.3.8), the non-linear term is

1
Qu(l) =< uxw, Tur> — (3.6.1)
14

One way to compute this term is spectrally. By substituting the expansions for
velocity and vorticity, the time-dependence is separated in the usual way from the
spatial dependence giving integrals of triple products of the basis functions. Each
time step would then involve a convolution sum. Even if the integrals of basis
functions could be evaluated analytically, a convolution sum is more expensive than
a pseudospectral approach where the coefficients are transformed to real space, the
non-linear product is formed, and the result is transformed back to wave space.
This led us to adopt the pseudospectral method.



3.6 Computing the Non-Linear Term ’ 28

To compute Qn'(¢) pseudospectrally, we first write equation (3.6.1) in compo-
nent form,

Qu(8) = ?c.;_r / / [(10ws) ity — (trwg) Umeol * sinbdrdd  (3.6.2)
74 0 0

then equation (3.6.2) is expressed as successive transformations in each direction
(note that this was also the case for eqn. 3.3.3). With q = u x w, the nonlinear
term can be written as

Qu(l) = Ezi (7', 0) — Fo(n', ) (3.6.3)

where the polar transform is

0r0) = [ (usos) P2u) dy

) (3.6.4)
wr )= [ (urop) PH) dy
and the radial transform is
= ! . oo ~ fn( 2
g, (n,0) = gr(r, )L +1) — redr
0 (3.6.5)

=X — A lﬂ 2
G, = [ G034 ha)dr

The integrals are then cast as sums using Gauss-Legendre and Gauss-Jacobi quadra-
ture (Appendix E).

When using a pseudospectral method, we must concern ourselves with alias-
ing — the phenomena of higher frequencies “masquerading” as lower frequencies
because a continuous function is sampled only at discrete points and described by
a Fourier series. With polynomials, errors creep in for the same reason, but you
cannot say that “one polynomial is mistaken for another.” Typically in a pseu-
dospectral method, the number of collocation points is equal to the order of the
approximating polynomials. In forming a triple product of the basis functions (as
in the nonlinear term above), the result will have aliasing errors. This occurs be-
cause the product of functions produces a new function with frequencies that are
higher than the original functions. If the original function is barely resolved, then
the polynomial approximation will not resolve the product and the higher frequen-
cies will appear as lower frequencies. With Fourier series, one way to remove this
error (or dealias) is to pack the coefficients in spectral space with zeros, transform
to real space with a larger number of points, perform the non-linear product at the
sample points, transform back to wave-space, and discarding the higher coefficients
(previously added). The number of points added and removed is (1/2) N, giving a
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total of (3/2) N. The equivalent process for other polynomial expansions is done
by choosing N, = (3/2) N. In this way, the integral expression, involving products
of three polynomials of up to order N (as in eqn. 3.6.2), is integrated exactly with
Gauss quadrature. If the flow is smooth and well resolved, however, dealiasing may
not be necessary since the higher modes which are interpreted as lower modes have
a very small contribution. To avoid aliasing errors, therefore, either the flow must
be over-resolved or we must use 3/2 N collocation points.

3.7 Initial Conditions

To start a calculation, only one scalar component of the vorticity needs to be
specified over the infinite domain. One could also start from a velocity field, but
specifying such a field requires two components and a constraint. Thus, in practice
a vorticity-based initialization is much more powerful. Two initial distributions
have been used — the Stokes vortex ring, and a thin ring with a Gaussian vorticity
distribution in the core.

3.7.1 Stokes Vortex Ring

Exact solutions to the diffusion equation for vorticity in spherical polar coordi-
nates are developed by Cantwell (1986) for several different forcings. The solution
of interest here is that resulting from an impulsive point force, leading to what we
will refer to as the Stokes vortex ring. This is a self-similar solution in time with
similarity variable, = r/+/4vt. This solution is a convenient starting point in our
calculations for several reasons.

Given such an exact solution, we are able to validate the Stokes part of the
Navier-Stokes solver (see section (4.2.1)). In solving the Stokes equations, the an-
gular direction is exactly represented by the first mode in 6 (£ = 1); the radial
modes are the only non-trivial terms in the expansion.

The vorticity distribution for a Stokes vortex ring is

_ I/p ) —y?
w(n,9) = m sm9n eXp (371)
and the radial and polar components of velocity are
—-I/p 1 1 —n? 1
= — - - — 1.2
ur(n,8) In(w )77 cos § ; [2ﬁﬂ e yoe erf(n)] (3.7.2)
_ =I/p ., 1]1 1 _p? 1

As Cantwell points out, the Stokes solution is uniformly valid over the full range
0<n <.
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The Stokes equations are a limiting form of the Navier-Stokes equations for a
Reynolds number approaching zero, where the appropriate Reynolds number is

_I/p)?
Rer = _——thl/Q

Note that the Reynolds number is inversely proportional to time. Starting at t; =0,
an impulsive force forms a turbulent puff (with Re; = co) of the type studied by
Glezer (1981), and after a very large time (t; — o), the vorticity and velocity
fields approach the Stokes distributions given by equations (3.7.1)-(3.7.3).

The free parameters are found by transforming the vorticity to computational
variables using equations (2.1.5) and (2.2.8),

(3.7.4)

~,

sin 7 exp"r2 (8.7.5)

Ry tr
From this, we see that the time, %1, is the only parameter in the solution. Also, the
time in the code, 2, is set to ¥ (or Rer).

- There is nothing that prevents us from specifying, for our initial state, a Stokes
solution which is at a Reynolds number outside of the range of validity of the Stokes
equations (Rey > 1). This is in fact what is done in the results section (5.2.1)
where the Navier-Stokes equations are solved with an initial Stokes distribution of
Reynolds numbers 30 and 40. Therefore, the starting solution contains only the
£ = 1 mode, and the other modes are excited through the non-linear terms. As
time progresses, the solution decays and returns to the Stokes solution. This is the
simplest initial condition, since it is characterized by a single parameter, Re;.

Note from equation (3.7.5) that contours of @? in expanding coordinates, 7,
are steady. This is convenient in studying the long time behavior; we can study
how the non-linear solution approaches the Stokes solution.

3.7.2 Thin Ring

Note that any function, wg(r,8) is a valid initial condition since in the un-

steady case the time derivative, ?% , is free. In this section, we describe a vorticity
distribution in the core which is easy to specify — a Gaussian. It has the additional
advantage that for a thin viscous ring, it is the first order solution to the vorticity
distribution in the core for a solution which has been evolving according to the
Navier-Stokes equations. Therefore, it is reasonable as a first guess.

In the core of a thin ring, where the core radius is small compared to the ring
radius, the solution is locally two-dimensional. Furthermore, to a good approxima-
tion near the core the streamlines are circular. Applying these assumptions to the
Navier-Stokes equations in polar coordinates, s and 8, the momentum equations

become )
Pus  9p -
— = 3.7.6
s Os ( )
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Figure 3.1. Schematic of a thin ring with Gaussian vorticity distribution

Ou 9?u 10u u
Al RPN (Rl W R (3.7.7)
ot 0s? s 0s  s?

where s is the distance from the vortex center. Equation (3.7.6) is a constraint of
the radial pressure gradient which must be maintained to have circular streamlines.
Rewriting equation (3.7.7) with the vorticity as the dependent variable, we have

Ow Pw 10w .
-é—_t——-l/(-és—Q-i-;'g) (3.[.8)
giving the classical Oseen solution (1910):
r —s2
ir) = > .
w(s,tr) pr—— exp <4z/tp> (3.7.9)

where I' is the circulation in a meridional half-plane. It follows that the tangential
velocity distribution is

(t)—l/s ds = — {1 s 3.7.10
Uﬁs,[‘~30w33—27rs exp_4ytr (3.7.10)

At the origin of time, tr = 0, the vorticity is concentrated on a line, s = 0, and as
it spreads it takes the shape of a Gaussian. The core radius, a, is defined as the
distance from the center of the vortex to the peak radial velocity. This is found from
equation (3.7.10) by setting -‘%%f'- = 0, and solving for a, giving a = 2.24182/vt.
To describe a thin ring, the two-dimensional vortex is offset a distance R from

the axis of symmetry as shown in figure 3.1. The distance from the core is therefore
s=(R?*+7r?—2Rr sin6)/? and the total vorticity distribution is

- 2 2
w:-{;——r— exp{—K (£—+%—Ezsin9)} (3.7.11)

a? a? a a a

where K = (2.24182)%/4. To assure that the initial distribution was smooth, an
image ring was placed across the axis of symmetry so that wy = 0 on the axis. In
computational coordinates this becomes

- 1 K 72 27 sinf
w::——F V ——————€XD — 1+'~—— — 3712
T / R2 (a/R)2 { (a/R)? ( R2 R )} ( )
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This initial condition is characterized by three parameters, Rer = (I'/v),, (a/R),
and the ring radius location in computational variables, R,. For thin rings, R, is
inconsequential in the description of the initial cond1t1on in physical coordinates.
Furthermore, given Ro, the collocation points are clustered about this radius. In
describing the Stokes solution, however, this is not a free parameter. Therefore,
for computing flows for long periods of time, we pick R, which can resolve the
limiting solution well, the Stokes vortex ring. In the Stokes solution, the ring radius
is not well defined; the peak of vorticity (R ~ 2) and the point where uy = 0
(R = 3) are not the same. Experience showed that the latter gave a more accurate
approximation of the solution, therefore, for all simulations, R, =3.

The appropriate choice of the 1n1t1a1 value of time, %,, for the thin ring initial

condition must be consistent with R = 3 and is found from the expression for
impulse

I/p=7r// we(r sin 0)? r drdf (3.7.13)
o Jo

Rewriting equation (3.7.13) in computational variables, gives

1=1Ir / / Ty (F sin 8)? 7 didd (3.7.14)
0 0

With equation (3.7.12), the vorticity (&g ) is specified, therefore, from equation
(3.7.14) t is determined.

3.8 Reynolds Numbers and Virtual Origins

There are many ways to define a Reynolds number for a vortex ring. Exper-
imentalists often use -UV—D = Rep, where U is the propagation speed, D is the

diameter of the ring, and v is the kinematic viscosity. Alternatively one might use

1/2
(—I/—:l)/—z— = Rey, where I/p is impulse, and £; = 0 is a virtual origin in time when
v

the ring was created by an impulse force (Cantwell, 1987). Still another measure
is I'/v = Rer. Because the flow is viscous, I' decreases with time. For rings with
infinitesimal cores however, the cancellation of vorticity across the axis is expo-
nentially small and for a time, I' &~ constant. Locally, in the core, the vorticity
is diffusing like a two-dimensional Oseen vortex. The origin in time for this case,
ir = 0, refers to the concentration of vorticity along a circular line.

Each of these Reynolds numbers is more appropriate in different circumstances.
Expressions can be derived giving approximate relationships of these Reynolds num-
bers to one another. For example, using I'/p & n I'(¢r) R(tr)? (which assumes that
the core is thin), and a ~ 2.24(vtp)!/? (fIOII’l an Oseen solution), we get

1/2
Rey ~2.24\/7 <£> <£> (3.8.1)
12 a
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Note that in equation (3.8.1), ¢; was replaced by tp. It gives an approximate
relationship between Re; and Rep (together with a/R).

Next, we express Rep(Rer,a/ R) by using the expression for the propagation
speed of viscous vortex rings (Saffman, 1970, i.e. equation (5.2.10)), and again,
a ~ 2.24(vir)/?, giving

UR 1 R
—_— 2.24)— ) - 0. 8.2
T yp [ln (4( 24) a) 0 558} (3.8.2)
Rearranging (3.8.2) gives
r
Rep = vo N — - 2 [ln <8.96—I—z> - 0.558] . (3.8.3)
v v 2w a

In the results, we have scaled the time in two different ways. This final para-

graph discussed these scalings and their relationships. The scaling more frequently
2 -

used in this work is }—7/; = 1. When there isn’t a subscript, ( )7 or ( )r, the origin

in time is determined by the method described in section 3.7.2. The second scaling,

5, is used in section 5.2 to study thin rings, and the virtual origin is chosen in

order to compare the calculation with theory, giving 2. In order to relate tr to
the time in the calculation, we must find %I'(%,%,, R,).

From (2.1.5), we can write

vt 1
Since R ~ constant, R a Eofi/z ,
vi t 1
R? i, R? ( )
Next, we shift the origin in time to get tr by
2 2 Tshi
YL Ly Ulshife (3.8.6)

RZ TR R

and we solve for the initial time in the calculation, ¢, from

Vishife _ vir vt ((a/R)o>”2 _ 2 (3.8.7)

R2 R2 2\ 2.24182 R

Combining equations (3.8.5) and (3.8.7) gives

vip 1 [t (¢/R), 2 .
(1) () o5

In the results, Rer and Re; are used when referring to a specific calculation.
When the distinction is not necessary, we simply use Re to denote the Reynolds
number.




Chapter 4

Harmonic Convergence

In this chapter, we examine convergence properties of the numerical method.
As mentioned in section 2.2, it can be shown for linear equations, that the con-
vergence of a spectral approximation to a typical velocity field (by least squares)
determines the convergence of the spectral solution to the exact solution of the dif-
ferential equation. Therefore, we begin by examining the convergence of a spectral
expansion to some typical solutions — Stokes rings and thin rings.

Next, by using the Stokes vortex ring solution, an analytic solution to the Stokes
equations, a substantial part of the code is tested. This test is easily implemented
by setting the convective terms to zero. Note that the polar dependence is exact
using the £ = 1 mode, so that only expansions in the radial direction are tested.

Because the Navier-Stokes equations are nonlinear, there is no guarantee that
the convergence of the time-dependent solution is related to that of the basis func-
tions, however, this is what normally happens in practice. By computing the im-
pulse (which is conserved in the exact solution) as a function of time, we are able
to test the global convergence and accuracy as the time step is decreased and the
resolution is increased. From this, we show exponential convergence with resolution
and second order convergence with the time step, as expected. Furthermore, when
the two limits are taken simultaneously, the error in impulse goes to zero, showing
that the solution is globally accurate.
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4.1 Initial Conditions

As shown in Gottlieb and Orszag (1977), the beauty of spectral methods is
their exponential convergence as the number of modes, IV, is increased. If the basis
functions are chosen incorrectly, however, the convergence can be much slower, or
the numerical solution may even converge to the wrong solution. An important
test is conducted in this section showing the convergence properties of the spectral
expansion to typical solutions. Of interest in particular, is the number of terms
that are required to represent a given vector field, and how the error varies with
the number of modes. First, we must define a measure of the error.

Only one vorticity component (wy) is nonzero in axisymmetric flow. If the
exact vorticity is given by w, then the local error,

Werror =W — Zant’ \Dnlu(r,e) ('-1:11)
né

is exponentially small. From this we define a global, normalized error:

.[4 wzrror d“-l
fA w?dA

1/2
wWE = [
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It follows that we expect the global error to also be exponentially small. Therefore,
Inwg versus N should be linear.

In figure 4.1, the global error is plotted on a logarithmic scale as a function of
the number of modes, N, where L = N. For four different initial conditions — a
Stokes solution, and three thin rings with a/R = 0.35, 0.15, and 0.1 — the curves are
indeed essentially linear, at least for large enough N . Because the Stokes vortex ring
involves only the £ = 1 mode and has a relatively smooth vorticity distribution,
it is the easiest to represent. With only 10 modes, the global error is O(1072).
Between 40 and 45 modes there is a jog in the curve, for which we do not have a
definitive explanation. The number of collocation points used in all cases studied in
figure 4.1 is N 4+ 5. For this stray point (/V = 45), an additional case was run with
2N, giving the same result to within plotting accuracy. From this, we conclude
that integration error is not the cause. Perhaps it is due to round off errors since,
with this number of modes, the errors are very small.

As expected, approximations of rings with thinner cores have larger errors than
thicker cores for a given number of modes. Notice also, that the slope is decreasing
slightly for thinner cores. ‘With a sufficient number of modes, however, all of the
cases considered indicate exponential convergence. When N and L are equal, the
number of collocation points in the core in each direction (r and 6) was roughly
equal. Therefore, for all of the thin ring cases, L is set equal to N, simplifying the
input.

The thinnest ring which was resolved sufficiently was a/R = 0.1. Because the
spacing between collocation points in 8 is equal (Appendix C), to resolve a ring
with half the core size, we need twice as many modes. At some point, therefore,
the payback is small compared to the cost. In practice, to determine if a given
problem is resolved sufficiently, it is best to show that the quantities of interest are
insensitive to variations in the free parameters, N, N, and r;, by £10%.

In solving the Navier-Stokes equations, we can start with any vorticity distri-
bution which satisfies the boundary conditions. In general, the gradients in the
solution will decrease overall (since the Re decreases in time), however, this is not
necessarily true locally (because Re is a global parameter). Although we expect
the solution at later times to require fewer terms than the initial condition, time-
dependent diagnostics are desirable. Furthermore, such diagnostics are needed to
monitor the accuracy of the time integration.

4.2 Time-Dependent Solutions

Next, the convergence and accuracy of the time-dependent solutions is exam-
ined. The Stokes part of the Navier-Stokes code is verified to be working correctly
by comparing vorticity profiles at several times with the analytic time-dependent
solutions. To study the accuracy and convergence of the numerical solutions to
the Navier-Stokes equations, since there are no useful exact solutions, we rely on



4.2 Time-Dependent Solutions . : 37

0.0100
0.0075
5]
0.0050
» —e_
» e
4 )
0.0025 / RS R R \.\
’ /-”

///‘

@ - .

: 4
0.0000 L - =Hrs aalb

0.0 1.0 2.0 6.0 7.0

Rl

Figure 4.2. Vorticity along § = 7/2 computed from the Stokes equation
(shown as symbols at the collocation points) compared to
the analytic Stokes solution: —, ¢t = 1.0; — —, t = 1.5;
—-——, t=2.0).

diagnostics such as impulse, circulation, and the comparison of the rate-of-change
of energy with dissipation. The impulse is especially useful since it is fundamen-
tally conserved for unforced flow in an unbounded domain. The impulse of time-
dependent solutions is computed for various step sizes and resolutions and shows
that the solutions converge (with decreasing step size and increasing V) and that
they are accurate.

4.2.1 Stokes Equations

The convergence and accuracy of the time-dependent solution of the Stokes
equations are tested using the exact solution of the Stokes equations, the Stokes
vortex ring (eqn. 3.7.1). This test is easily implemented by setting the convection
term equal to zero in the Navier-Stokes code. The polar direction is exact with only
the ¢ = 1 mode (the 6 dependence for both the Stokes vorticity and the first polar
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vorticity function, P}, is sin ), therefore, it is sufficient to consider only the radial
direction, for which there are 10 modes and 15 collocation points.

The initial condition is given by the solid line in figure 4.2 (¥ = 1) and the
approximate representation of the function at the collocation points is shown by
triangles. Integrating the Stokes equations in time (40 time steps) gives the result
shown by circles (f = 1.5). The exact solution at that time, shown by the long-
dashed line, is in close agreement. Integrating once again (30 time steps) we get
the square symbols. Again, the results are in very close agreement with the exact
solution at that time (7 = 2.0) represented by the shortdashed line.

Notice that the solution is very accurate with only 10 terms — the initial con-
dition, at 7 = 1, corresponds to wg of O(107?) in figure 4.1 — and the accuracy
is maintained at the later times. Also note that the peak vorticity moves outward
with time and the collocation points (because of the transformation — eqn. 2.1.8)
follow suit.

4.2.2 Navier-Stokes Equations

Since exact solutions of the full nonlinear equations are not available, other
methods are needed to verify that the code converges and that it is accurate. One
indication is the degree to which global invariants, such as impulse, are conserved.
Also computed are the rate of change of vorticity, circulation, the momentum, and
the dissipation and rate of change of energy. Another means of verifying the accu-
racy is to compute limiting solutions and compare them with asymptotic theories

(see Chapter 5).

A single case ((I'/v), = 100 and (a/R), = 0.35) is run: first, with a fixed
resolution and varying the time step, and second, with a fixed time step and varying
resolution. The baseline case, from which these variations are made, uses 55 x 35
modes, 400 time steps, and (A?)b = 0.0025. At each time step, we compute the
percent error in impulse, defined by '

_ I'_'Iéxact

Ig = x 100. (4.2.1)

I?zact

Recall that ¢ gvefers to the dimensionless time and ? refers to the time in the calcu-
lation, where t = Int%.

In figure 4.3, the time history of Ig is plotted for four different step sizes:
%(A?)b, (A?)b, Q(A?)b, 4(A‘tv)b, using 800, 400, 200, and 100 time steps, respec-
tively, where the baseline case is shown by the chaindashed curve. As expected, the
error becomes smaller with smaller time steps. Furthermore, the magnitude of the

error in this figure is very small - & 0.001% (accurate to 5 significant digits). We
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found that the largest step size, 4(At)s, is very near to the stability limit (with
larger values of At, the solution blew up) indicating that stability rather than ac-
curacy, constrains the maximum step size. At the final time, ¥ = 0.00083, Ig is
plotted as a function of (At)? (figure 4.4). As expected, the curve is linear, since
the time differencing scheme is second order accurate (see Chapter 3). This test is
useful for detecting subtle coding errors.

Note in figure 4.3 that the curves are converging to a finite error in impulse.
We immediately suspect that the spatial resolution is responsible for the remaining
error. To test this, the resolution is varied (45, 55, and 65 modes) from the baseline.
The result, figure 4.5, shows that this is indeed the case — the dashed line is the more
coarse grid and the solid line is the fine grid, showing that the error is now going to
zero. Furthermore, plotting the logarithm of the error at the final time as a function
of the number of modes (fig. 4.6), gives a relatively straight line. Therefore, we have
shown that the time-dependent solution converges exponentially with the number
of modes, N. This is interesting since a rigorous proof for this behavior does not
exist for the Navier-Stokes equations.

At each time step in the calculation, several other diagnostics are computed in
addition to the impulse. The circulation, given by

'F:/ / wdydz (4.2.2)
—o0 JO

is compared to the input value for thin rings, and monitored over time. As the time
becomes large, the circulation approaches zero due to diffusion of vorticity across
the axis of symmetry, which cancels with that of the opposite sign. However, at
early times the loss of circulation is exponentially small.

As shown by Cantwell (1986) the initial forcing on the flow in the form of an
impulse in space and time, transfers 2/3 of the impulse to the velocity field and 1/3
to the pressure field. It is a simple matter to compute the integral of the velocity
over the domain,

H:/ udV=27r/uydA (4.2.3)
v A

where V is the volume of an infinite domain, and A is the area of the meridional
half plane. Evaluating equation (4.2.3) does indeed give 2/3 of the impulse. This
is primarily a check of the behavior of the velocity field at large distances.

The kinetic energy was computed and its rate of decay compared very well
with the dissipation, which was computed separately from the velocity derivatives
(see figures 5.1k and 5.11k). This showed that the viscous term was resolved and
that the numerical dissipation (of either sign) introduced by time-integration errors
was much smaller than the true viscous dissipation. This again indicates that the
stability criterion is more stringent than the accuracy concern. One advantage of
this behavior, is that any solution which is stable is also very accurate.
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Chapter 5

Results

In the previous chapter we showed that for the numerically computed flow
fields, impulse.is conserved to high accuracy, and that it converges exponentially in
space and second order in time. Furthermore, by comparing computations of the
Stokes equations with the exact solution, we gained confidence that the method
is formulated and implemented correctly. In this chapter, we will build upon that
confidence by showing that the calculations agree with asymptotic theories for large
time and small time motion: the Stokes limit and the limit of infinitesimal cores.
Because the full nonlinear equations are solved, we observe the way in which the
solutions approach the asymptotic solutions.

To orient the reader, we will begin by showing a typical calculation of a single
vortex ring at a Reynolds number, Rer, of 500. Vorticity contours and streamlines
are plotted, showing details of core shape, shedding, and transport of vorticity with
the core. Next, the asymptotic cases are discussed. The final section describes the
computation of interacting vortex rings with Reynolds numbers of 1000 each. The
vorticity contours illustrate the severe straining of the inner vortex through the first
pass and merging of the two vortices during the second passage.
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5.1 Evolution of a Single Vortex Ring

In experiments, vortex rings are generated by impulsively forcing a column of
fluid through a nozzle. The vortex ring forms from the rolling-up of the vortex sheets
created by the boundary layer along the walls of the nozzle (Didden, 1979). After
the initial transient behavior associated with this formation process is over, the
dominant parameters of the flow are I'/v, and a/R. Although we are not equipped
to calculate such a complex starting process, we can start with any smooth vorticity
distribution (which satisfies the boundary conditions) and integrate the Navier-
Stokes equations forward in time. As a first guess, we use a Gaussian distribution
through the core, since locally (for a sufficiently thin core) it is the leading term in
the Navier-Stokes equations (see section 3.5.2).

Figures 5.1a. through 5.1g show vorticity contours for a typical solution with
the initial conditions, a/R = 0.35 and Rer = 500. The contour levels are the
same for each figure. The solid lines denote high levels and the dashed lines are low
levels (the difference between the solid lines is a factor of 10 larger than between
the dashed ones; the outermost dashed contour is 1/100®* of the innermost solid
contour in figure 5.1a). Two families of contours were needed to display the behavior
in the core and in the tail on the same plot. In figures 5.1h and 5.1i, time-histories
of the global quantities, ring speed and circulation, are shown. The solid dots in
figure 5.1h correspond to figures 5.1a through 5.1g. Figures 5.1j and 5.1k are the
time-dependent histories of the diagnostics, impulse, and diffusion shown together
with the rate-of-change of energy.

The vorticity is positive (counterclockwise), therefore, the ring convects to the
right under its own induced velocity. Note that the peak vorticity decreases rapidly
‘from the initial condition in the first few frames. The vorticity is diffusing outward
from the core, as seen from the lowest contour levels. When the vorticity reaches
the axis of symmetry, it cancels with vorticity of opposite sign across the axis, and
circulation decreases. This is reflected in figure 5.1i, where the initially constant
circulation begins to drop off rapidly at the time corresponding to figure 5.1c.

The core starts out circular (fig 5.1a) and after traveling a short distance,
adjusts to a more elliptical shape (fig 5.1b) through its own self-induced strain.
Evidence of this transient behavior is seen in the ring speed history of figure 5.1h,
where the ring initially speeds up before it begins to decelerate. If the initial core size
were made sufficiently small, this transient effect would no longer appear because the
Gaussian core would be very close to the natural solution. Because of this initial
unsteady behavior, the wake of vorticity is swept upward. For later times, the
vorticity contours show a quasi-steady distribution (nearly steady in a translating
frame) with a shape that is reminiscent of Norbury’s family of steady, inviscid vortex
rings.

Figures 5.1a' through 5.1g' show instantaneous streamlines (in a translating
reference frame) on top of the vorticity contours shown previously. Note the dividing
streamline separating the fluid which is carried with the core of the vortex and the
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fluid which is left behind at a given instant. Because the flow is unsteady, the
streamlines differ from the pathlines and streaklines, and care must be used in
discussing the time-dependence given an instantaneous picture. The observations
seem to be in agreement with Maxworthy’s heuristic model (1972) where vorticity
diffuses across the dividing streamline and is carried downstream to form a wake.
The wake however, does not extend very far behind the ring before it is annihilated
by viscous diffusion. Including a passive scalar in the calculation would be useful
to clearify this process.
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Figure 5.1. The evolution of a single vortex ring starting from initial
conditions of a/R = 0.35, T'/v = 500. (a)-(g): Vorticity
contours at several instants in time. The change in vorticity
between solid contours is a factor of 10 larger than between
dashed contours. For lines of the same type, the vorticity
varies linearly. (a’)-(g'): Instantaneous streamlines in a
translating reference frame plotted on top of the vorticity
contours of figures 5.1a-g. (h) Ring speed versus time.
(1) Circulation versus time. (j) Impulse versus time (k) Rate
of change of energy and dissipation versus time.
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Figure 5.a’.

Figure 5.1a’-g’. Instantaneous streamlines in a translating reference frame
plotted on top of the vorticity contours of figures 5.1a-g.
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Figure 5.1d'.
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5.2 Asymptotic Results

In this next section, asymptotic solutions are considered. Irrespective of the
initial condition, the flow will come back to rest after a long period of time (since
the kinetic energy necessarily decays). We are interested in the rate at which this
happens, and whether or not it depends on the history of the flow (i.e. such as the
initial conditions). We are also concerned with the asymptotic solution as the core
radius becomes infinitesimal. In particular, by solving the full nonlinear equations
we want to determine the effect of core size and Reynolds number on the vortex
ring propagation speed.

5.2.1 Large Time

As described above, a bubble of vorticity surrounds the vortex core and travels
with it. Due to viscous diffusion, irrotational fluid is entrained into the bubble
as it propagates, the bubble grows, and the ring slows down. The vortex ring
asymptotically comes to rest, and the vorticity spreads to the far field with the
viscous length scale, v/vt. At this point, the viscous effects have overtaken the
nonlinear convection effects. The way in which this occurs and its dependence on
the initial conditions is the subject of this section.

The appropriate Reynolds number for this flow is

I/ s
Refzufgﬁ—ztll/“. (5.2.1)
vip

where t; corresponds to the virtual time when the ring was started from an im-
pulsive, point force (Cantwell, 1986). Note that as the time becomes larger, the
Reynolds number becomes smaller.

The limiting behavior of the Navier-Stokes equations as ¢ — oo is found by
substituting the similarity form of the Stokes variables

I
" Vvt
Ilp .
u; = Woi(ni) (5.2.2)

I
plp= (45{;21’(17:')

into the Navier-Stokes equations, simplifying, and grouping the remaining parame-
ters to form a Reynolds number. Then. taking the limit as Re — 0, gives the self
similar form of the Stokes equations:

By _moli 0P OU: _
270 20y Oni On;on,

0 (5.2.3)
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(Cantwell, 1986). The solution of equation (5.2.3) is the Stokes vortex ring given
by equation (3.7.1). The vorticity distribution of this solution is fixed in space.

By dimensional arguments, we expect that the Stokes vortex ring is drifting like
t=3/2 | Indeed this behavior was experimentally observed by Kambe and Oshima
(1975). In this paper, they also attempted (without success) to extend the Stokes
solution to second order. In a successful attempt to extend the Stokes solution to
second order, Rott & Cantwell (1987) found that it was necessary to add a drift to
the Stokes solution in the form of a modified independent variable: 7,

I 2
_e-DB “ o4
nl— \/m (.....)

where the constant, D, is required to be

7

in order for the second order solution to exist. The drift velocity is therefore given
by '
U =Dt 3/ (5.2.6)

Note that the length scale associated with the drift is of lower order than the length
scale of the vorticity due to viscous diffusion.

We are now in a position to compute the flow field and observe the effects of
the initial conditions on the limiting behavior. The simplest initial condition, the
Stokes solution, has only one independent parameter, the Reynolds number (or the
elapsed time, t7). Unless the Reynolds number is much smaller than one (i.e. very
large t1), the solution is outside the range of validity of the Stokes equations and
the nonlinear terms affect the solution. As a result, higher modes are excited (than
the dipole). After a sufficient passage of time, the viscosity damps these higher
modes and the solution returns to the Stokes distribution of vorticity. Because
the Stokes solution is self-similar in time, there is a frame of reference in which it
is steady — contours of ZT° with the coordinates r/\/vt, in a frame of reference
which is translating with the speed of the ring. This is convenient for observing
the departure from the Stokes solution and the subsequent return to it. Unless
otherwise mentioned in this section, these are the contours and axes plotted. In

addition, for each case we plot the drift, T , as a function of time.

The first case considered is the Stokes solution, at an initial Reynolds number,
Rej,, of 30. Vorticity contours (a’?fg) in the meridional half plane are shown in
figures 5.2a through 5.2d, and the time dependent drift is shown in figure 5.2¢, with
symbols corresponding to the vorticity plots. In the first frame we see the Stokes
solution (fig. 5.2a), which is symmetric fore and aft. By solving the Navier-Stokes
equations, we get the solution at a later time, figure 5.2b. This figure shows that the
peak has moved faster than the surrounding vorticity, and through the nonlinear
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term, the symmetry has been disturbed. Futhermore, the quasi-elliptic core is tilted
to an angle with respect to the axis of symmetry. At a later time (fig. 5.2c) the
vorticity distribution is becoming more Stokes-like and finally (fig 5.2d) it returns
to the Stokes solution. The corresponding drift starts out at the constant D., and
quickly deviates. By the time the solution appears to have returned to the Stokes
solution (fig. 5.2d), the drift has returned to D. to within plotting accuracy.

In the next case, Rey, is 40. The vorticity contour plots (fig 5.3a through 5.3d)
are qualitatively similar but the initially higher Re ring initially moves faster, and
the vorticity gradients are larger. Again, the solution asymptotically returns to the

Stokes vortex ring (fig 5.3d). From figure 5.3e, we see that TP/ initially deviates
dramatically from D, and then begins to return. In contrast to the previous case,

T overshoots, and returns to D, asymptotically from below. An analogy can
be drawn between this and a damped spring-mass system where increasing the
Reynolds number is analogous to decreasing the damping.

Next, we begin with two Stokes distributions at Re = 2 each (fig. 5.4). The
two rings merge with very little influence from the nonlinear term (no noticeable
asymmetry). For this case the initial drift, iE , is different from D.. (Here,
there is some arbitrariness in the choice of the origin of time. However, for large
enough times, this effect becomes insignificant.) After some time, the flow goes to
the single Stokes vortex ring with the same Stokes drift, D., as the previous cases
(the impulse used is that of the two rings combined).

Figure 5.5 shows a starting condition of a single thin ring with an initial
Reynolds number, Rer,, of 150 and a/R = 0.25. Figures 5.5a through 5.5d show
the usual contours in the Stokes coordinates. For comparison, figures 5.5a’ through
5.5d" , show vorticity contours at the same times in stationary physical coordinates.
Note that the ring travels a fixed distance, and at large times, the flow at the origin
is uniform. The drift at large times also asymptotes to the same value as the above
cases, D..

The value of D, found by computations is 0.003703 which matches to four
significant digits the value in equation (5.2.5) determined by Rott.

In summary, the results for the large time behavior show that flows with several
different initial vorticity distributions approach the same steady solution for @ ?2
in a frame of reference which is translating at the ring speed and expanding with
viscous diffusion, r/\/ﬁ The asymptotic solution (in this translating frame) is
the Stokes solution. Furthermore, the centroid of the vorticity drifts at a speed,
T =0.003703 T°/* regardless of the initial condition. Finally, the accuracy of the
computations is further confirmed by the agreement to 4 significant digits between
the computed drift and that obtained from theory by Rott.
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Figure 5.2. Navier-Stokes calculation starting with a Stokes vorticity
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of @ & in a frame of reference translating with the ring
speed which is also expanding. (e) Time history of ring
speed where dots correspond to the times shown in figures
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Figure 5.3. Navier-Stokes calculation starting with a Stokes vorticity
distribution at a Reynolds number of 40. (a)-(d) Contours
of @ I* in a frame of reference translating with the ring
speed which is also expanding. (e) Time history of ring
speed where dots correspond to the times shown in figures

(a)-(d).
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Figure 5.4. Navier-Stokes calculation starting with an initial condition
of two Stokes rings at a Reynolds numbers of 4 each.
(a)-(d) Contours of @ 7 in a frame of reference translat-
ing with the ring speed which is also expanding. (e) Time
history of ring speed where dots correspond to the times
shown in figures (a)-(d).
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Figure 5.5. Navier-Stokes calculation starting with an initial condition
of a thin ring, a/R = 0.25 and I'/v = 150. (a)-(d) Contours
of @ ¥ in a frame of reference translating with the ring
speed which is also expanding. (a’)-(d’) Contours of @ in
a fixed frame of reference, corresponding to figures (a)-(d).
(e) Time history of ring speed where dots correspond to the
times shown in figures (a)-(d) and (a’)-(d’).
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5.2.2 Small Time

In 1970 Saffman extended the theory for the propagation speed of steady invis-
cid vortex rings (Fraenkel, 1970) to that of unsteady vorticity distributions, resulting
from the presence of viscosity. The underlying assumption in Saffman’s theory is
that the core radius is vanishingly small (¢> << R?). In addition, he suggests
a general definition of ring speed in a three-dimensional unsteady flow, which has
many merits (and it is a vital step in the theory). In this section, computed solu-
tions of the full Navier-Stokes equations in the thin ring regime are compared to
the theory. Motivations for this study are: to provide a check to the code, to assess
the range of validity of the theory, and to determine the next order correction to
the theory. First, we describe the theory, next we expound the interesting issues,
and then discuss the results.

Saffman’s Theory

Since the flow is not steady in any reference frame, it is necessary to define
what is meant by the velocity of the ring. For three-dimensional unsteady flow,
Saffman used a centroid defined by

1 rxw-I
= - —1rdV 2.7
X 2/; 2 r (5.2.7)

where r is the position vector relative to some fixed point. The ring speed 1s

therefore
dX

U= prl (5.2.8)
Saffman’s formula is easily checked for several special cases where (5.2.7) reduces
to the obvious centroid: a pair of rectilinear line vortices, a vortex ring with an
infinitesimal cross section, and Hill’s spherical vortex. Also note that the denomi-
nator, impulse, is the fundamental conserved quantity. Therefore, X is the centroid
of impulse elements. For axisymmetric flow, equation (5.2.7) reduces to

_ Jwzy?dA _ Jwzy®dA

X = Jwy?dA - I

(5.2.9)

where the position of the point in the flow defined by X is independent of the
reference point defining the origin.

Saffman showed that the vorticity distribution, to first order, is Gaussian in
the limit of small cores. Furthermore, the length scale associated with the core is
(4vtr)*/? where v is the kinematic viscosity and tr is the time since the ring was
concentrated on a circular line. With this, he found that the propagation speed of
a viscous vortex ring, valid in the limit of vtr/R? — 0, is

re L 88\ _ o553 vz vt 5.9
U=—= <1n(m) 0.558+ 0 (=) In(5; )]) (5.2.10)
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It is interesting to compare this result with the propagation speed of a thin
core with uniform vorticity in an ideal fluid,

a

U= [ln =X -2 +0 (E)] . (5.2.11)

known as Kelvin’s formula (Lamb, 1945). The viscosity does not affect the logarith-
mic leading term, and the core radius, a, is replaced by a time dependent length
which measures the size of the viscous core, (41/tr)1/ 2,

Issues

As mentioned above, an assumption in the theory is that the vorticity distri-
bution in the core is locally, a two-dimensional Gaussian. This is affected by the
ring curvature. To be precise, the viscous term expressed in Cartesian coordinates

1S
0 0 10
Vi, =212, 9 29
vViwg ” 6x2+8y2 7 9y Wey

A local solution is a two dimensional Gaussian when the curvature term (last term
on the right hand side of eqn. 5.2.12) is neglected. We are interested in quantifying
the effect on the propagation speed with this term included, as well as the curvature
in the convective term.

(5.2.12)

Although it is not discussed by Saffman, there exists a one-parameter family
of solutions even with vanishing initial core radius. The parameter is the Reynolds
number, Rer = I'/v, which is independent of core size. The question arises there-
fore, as to whether or not equation (5.2.10) is uniformly valid and how the ring
speed depends on Rer. For clarity, equation (5.2.10) is written as

if %—g— < A, then IUd,'ffl < B x ’(%‘-)1/2 ln(%)‘ (5.2.13)
Here Ugify is the difference between equation (5.2.10) and the ring speed defined by
‘equation (5.2.7) and (5.2.8) and computed in the Navier-Stokes code. A is, roughly
-speaking, the range of validity of the approximation, and B is the proportionality
constant. They are not unique (one can trade between A and B), but for a given 4
there is a minimum value B,,;,. The most relevant quantity is the limit of Bpin(A4)
as A — 0. If equation (5.2.13) holds. this limit is finite. Furthermore, A and B
depend on Rer. If B is finite over the range 0 < Rer < oo then the error estimate
is uniform.

There are several limits being taken at once. We are interested in the limit as
vtr/R* — 0, while Rer — 0 and Rer — oc. Computing flows in the limit Repr — 0
is easy, the other two limits are not. Unfortunately, we are not able to compute
the flow at ¢r = 0 when the vorticity is concentrated on a line, preventing us from
strictly observing the behavior in the limit as vtr/R? — 0. This is not a serious
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problem, however, if we can start with sufficiently thin rings. As Saffman argued,
after a sufficient amount of time has passed (from the initial condition), the only
parameters remembered are the ring size, R, and the circulation, I'. By starting
with several initial core sizes, (tr),, the time dependent flow should collapse to the
solution which would be followed if the initial core were infinitesimal. The limit as
Rer — oo is also not possible with this code because of the time step restrictions
related to the explicit scheme applied to the nonlinear term. Still, a sufficient

number of cases are considered at fairly high Rer to give a good indication of the
high Rer behavior.

Results

We are looking for small differences, so diagnostics are very important. The
usual diagnostics monitored are impulse, circulation, energy and dissipation. The
most difficult case is the thinnest ring at the highest Rer, giving an upper bound
for the errors. The impulse was accurate to within 0.02% for the duration of these
computations. Because the theory applies only for thin rings, it is assumed that
the loss of circulation is exponentially small. Computations are stopped, therefore,
when the circulation is 99% of the initial value, giving a conservative upper bound.
The rate of decay of kinetic energy compared very well with dissipation, which was
computed separately from the velocity derivatives. This shows that the viscous term
was resolved and that the numerical dissipation introduced by the time integration

errors was much smaller than the viscous dissipation. In addition, the “effective
radius,” defined by

ffywdxdy
J [ wdzdy

was shown both analytically and numerically (to leading order) to vary like
dR? £f /dt = —2v. This is related to the spreading of the core and, like the ki-
netic energy, is a fine measure of the effect of viscosity.

Figures 5.6 through 5.9 correspond to Reynolds numbers of 0.01, 50, 100, and
200. In each case, two plots are shown. The first plot, labeled (a) displays the
asymptotic theory (eqn. 5.2.10) and four different initial core sizes (a/R = 0.12,
0.15, 0.25, 0.35). The initial conditions are indicated by solid dots. Keep in mind
that each initial condition is a Gaussian vorticity distribution and that the core is
circular. The lines represent the time history of the ring speed.

Regy = (5.2.14)

In figure 5.6, Rer is nearly zero (Rer = 0.01). Therefore, the effect of the
nonlinear term is very weak and the vorticity remains nearly Gaussian as it spreads
(as seen in the results of the previous section). As mentioned above, however, the
axisymmetric vorticity is not exactly Gaussian due to the curvature term in equation
(5.2.12). The ring speed indicates that the vorticity is nearly Gaussian as predicted
by Saffman, since the time histories of the initially thinner rings pass right through
the symbols corresponding to two-dimensional Gaussian initial distributions with
larger cores. In other words, the curvature effect is very small.
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By plotting the difference between the velocity given by the asymptotic theory
and that from the computations, Ugify, the ordinate is greatly expanded. Figure
5.6b shows the same data (as shown in figure 5.6a) of Uyify and an abscissa of
—(vtr/R*) In(vtr/R?)'/? (the reason for this form is discussed later). Now the lines
are distinguishable, and we can see that the curves merge at later times, however,
the differences between the time histories of various initial core sizes is small. At
higher Rer, this will no longer be the case.

Figure 5.7 is a similar case except that Rer = 50. In figure 5.7a, the solid
dots show the intial conditions and the lines leaving them are the time histories of
the ring speed from the initial condition. Again, the asymptotic theory is shown
for comparison. On this scale, the differences are difficult to distinguish, so we
again plot the results in the expanded view of figure 5.7b. The (lighter) solid line
corresponds to the Rer = 0.01 case for comparison, which starts from the initial
core size, a/R = 0.12. Because the velocity is normalized by I', the initial condition
does not change from the previous case (fig. 5.6). From this figure, we can test the
hypothesis that the solution at some time does not depend on the initial conditions.
The curves corresponding to the four different initial core sizes form an envelope,
which represents the correct solution if we were able to start with an infinitesimal
core. This claim is further substantiated by figures 5.8b and 5.9b where the Reynolds
numbers are 100 and 200. In the Rer = 200 case we see that the envelope formed
can be approached from either side. To reiterate, by starting with the thinnest
possible core, the transient associated with imposing the Gaussian core as an initial
condition is smallest (since in the limit of a/R — 0, the Gaussian is to first order
correct). By considering several different initial core sizes, we are able to isolate the
effect of this transient and see at what point the envelope of the curves forms. This
envelope corresponds to the solution which would result if we were able to start
with an infinitesimal core.

The results of figures 5.6 through 5.9 are summarized in the next three figures,
along with two cases for higher Rer (400 and 800). Figure 5.10 shows a plot of ring
speed as a function of time for several different Reynolds numbers, compared to
the asymptotic theory. The initial core sizes for all of these cases are a/R = 0.12,
and because the ring speeds are normalized by T', the initial velocities collapse.
Bracketing the results is the asymptotic theory on the top which is labeled as such,
and on the bottom is the nearly zero Rer case shown by a thick solid line. The
Rer = 50 case is distinctly shown by a long dash line, and the rest of the Rer cases
are more or less on top of one another. This suggests that the zero Rer case has the
largest disparity from the asymptotic theory at finite cores and that the normalized
ring speed at high Rer is independent of Rer. Again it is helpful to expand
the picture, so that small differences are more apparent. In figure 5.10b, we show
Ugiss plotted versus Saffman’s error estimate, (vtr/R?)!/2 In(vtp/R?)/? for each
of the cases shown in figure 5.10. Note all of these curves are tending to zero faster
than linearly, indicating that Saffman’s error estimate was conservative. By trial
and error, we came up with an improved error estimate, (vir/R?) In(vtr/R*)Y/2.
Plotting the curves versus this function of time (fig. 5.10c) we see that at zero
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Rer, Uaisys is nearly linear. From the slope of 0.42, we then have a correction to
the asymptotic theory of (5.2.10) which shows the effect of a finite core size and
of curvature. For higher Rer, the curves are no longer linear, but this previous
correction gives an upper bound. The transient behavior is also more apparent in
this coordinate system:.

In summary, the numerical results are in full agreement with Saffman’s the-
ory. Furthermore the error at Re = 0, and probably at all Reynolds numbers, is
smaller than Saffman’s own estimate by a factor \/vtr/R?. The new error esti-
mate holds until the diffusion of viscosity across the axis becomes significant. There
is an indication that as Re approaches either 0 or co, the velocity approaches a
limit which is only a function of the time in viscous units (vtr/R?). Finally, the
procedure of starting the simulation at a finite time (vir/R?), and taking the limit
(vir/R*)o — 0 is valid, and our method allowed us to start with thin enough rings
to observe the asymptotic behavior.
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Figure 5.6. Propagation speed versus time for vortex rings of strength,
Rer = 0.01, initial core sizes vary: , (a¢/R), = 0.12;
---,(a/R)o =0.15;-—~, (a/R), = 0.25; — ——, (¢/R), =
0.35. The solid dots are the initial conditions. (a) Compar-

ing computation with theory, versus time, vir/R*. (b) Dif-
ference between computation and theory, versus

(Vt[‘/Rz) hl(l/tp/]{Q)l/2 .
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Figure 5.7. Propagation speed versus time for vortex rings of strength,
Rer = 50, initial core sizes vary: ——, (a/R), = 0.12;
---,(a/R), =0.15;--—, (a/R), = 0.25; — ——, (a/R), =
0.35. The solid dots are the initial conditions. (a) Compar-
ing computation with theory, versus time, vtr/R*. (b) Dif-
ference between computation and theory, versus
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Propagation speed versus time for vortex rings of strength.
Rer = 100, initial core sizes vary: —, (a/R), = 0.12;
---, (¢/R)o = 0.15; -~ ~, (a/R)o = 0.25; — - —, (a/R), =
0.35. The solid dots are the initial conditions. (a) Compar-
ing computation with theory, versus time, vtr/R?. (b) Dif-
ference between computation and theory, versus

(I/t[‘/RQ) ln(utp/R2)1/2 .
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Propagation speed versus time for vortex rings of strength,
Rer = 200, initial core sizes vary: —, (a/R), = 0.12;
---,(a/R)o =0.15;-——, (a/R)o =0.25; — - —, (a/R), =
0.35. The solid dots are the initial conditions. (a) Compar-
ing computation with theory, versus time, vtr /R*. (b) Dif-
ference between computation and theory, versus
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Evolution of vortex rings with (a/R), = 0.12 and differing
Rep: —, Rer = 0.01; — - —, Rer = 50; — — —, Rer =
100; - - -, Rer = 200; —, Rer = 400; —-—, Rer = 800.
The solids dot are the initial conditions. (a) Comparison
of computed ring speed and theory (eqn.” 5.2.10), which
assumes (a/R)? << 1. (b) Difference between computed
ring speed and theory versus (vtr/R?)!/? In(vtr/R?)'/2.
(c) Difference between computed ring speed and theory ver-
sus (vtr/R?) In(vtp/R*)/2.
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5.3 Leapfrogging of Two Vortex Rings

There has been some debate in the literature about the nature of interacting
vortex rings, in particular, whether or not the classical leapfrogging of inviscid rings
could be realized in viscous flows before the vorticity merged due to viscous effects
(Oshima et al., 1975, Maxworthy, 1979, Yamada & Matsui, 1978, 1979). Using
a smoke wire stretched across the exit of a vortex generator, Yamada & Matsui
(1978, 1979), showed the passage of smoke marking the fluid and a subsequent
merging of the smoke during the apparent second passage. Furthermore, they stated
that three or four slip-throughs were observed by Oshima et al. (1977). Because
vorticity diffuses more rapidly than smoke, however, it is quite possible that the
smoke can indicate a successful passage while the vorticity simply merges (Oshima
et al., 1975). Below, vorticity contours are plotted for a Navier-Stokes calculation of
two rings with an initial separation distance of one ring radius. The results do show
a successful passage before merging. The effects of convection and diffusion on the
interactions are distinguished through a qualitative comparison of the Navier-Stokes
calculation with an Euler calculations of a similar case by Shariff (1987).

With vorticity of the same sign and with the initial conditions, Rer = 1000
and a/R = 0.1 each, two rings are seen leapfrogging in figure 5.11. In figures
5.11a through 5.11g, the contours are of @, and figure 5.11h shows the propagation
velocity of the total vorticity centroid (defined by eqn. 5.2.7 and 5.2.8) as a function
of time. Asin figure 5.1, the contour levels are the same throughout the simulation,
where the higher vorticity levels are shown by thick lines and the lower vorticity
levels are shown by thinner lines. As before, the difference in vorticity between the
thick lines is a factor of 10 larger than the difference between the thinner lines. For
ease of discussion we will name the rings: the ring which is initially on the right is
referred to as R1, and the ring initially on the left is R2.

Because cores are very thin, the contours in figure 5.11a are indistinguishable.
The outermost contour is 1/100** of the initial peak vorticity (there are 10 thick
and 10 thin contours lines). In the second frame (Fig. 5.11b), the peak vorticity
has decreased roughly 60% and 70% of the initial value for R1 and R2, respectively
(i.e. 4 thick lines remain for R1, and 3 for R2).

At the initial time of the calculation (Fig. 5.11a), R1 and R2 induce ve-
locities on each other perpendicular to the axis of symmetry; Rl stretches while
R2 contracts. Considering inviscid flow, by Helmholtz’ laws, D(w/R)/Dt = 0 or
D(wS)/Dt = 0, where S is the cross sectional area of a vortex tube. From this,
we would expect that w ~ R and § ~ 1/R. Figure 5.11b shows that we indeed
see the correct trend — R1 has a higher peak than R2 and a smaller core. The
interactions continue and R2 catches up with R1 in figure 5.11c and has passed it
in figure 5.11d. Note that R2 shows straining from the passage: it develops a tail-
like structure (Fig. 5.11e) which then pinches off (Fig 5.11f). Starting from figure
5.11e, the process repeats from the beginning where R2 is now the leading ring and
R1 is trailing. Because of the first passage and the viscous effects, the rings are
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significantly fatter and their cores are closer together than they were initially and
the second passage is unsuccessful (R1 merges with R2).

It is interesting to note that the velocity of the vorticity centroid oscillates
as the rings pass, with the maximum speed occurring when the rings have the
same radius and a minimum speed occurring when their centroids are at the same
x-location (see figure 5.11h).

The qualitative behavior is similar to the smoke visualizations of Yamada &
Matsui (1978), however, it isn’t very useful to compare the results in detail since the
smoke is not marking the vorticity (especially since smoke is not only ejected into the
vorticity layer but is across the entire jet diameter). A passive scalar is needed in the
calculation in order to make a comparison with this type of experiment useful. It is
quite interesting, however, to compare the viscous calculations with similar inviscid
results of Shariff (1987). Shariff solves the Euler equations using contour dynamics
for two rings of the same initial separation distance. The vorticity distribution in
the core for the two calculations are necessarily different. For the contour dynamics
formulation, it is assumed that the vorticity is uniform (constant w/y) and that it
is zero outside the core radius. In the viscous calculation we start with the usual
Gaussian vorticity distribution. Furthermore, the initial core-to-ring radius for the
contour dynamics case is 0.18. The comparisons, therefore, are qualitative. Figure
12 shows vorticity contours for the two calculations at similar times. The figures
are shown on the same scale. In figures 12a and 12a’, the core shapes are very
similar. As the passage progresses the straining of the ring which passes inside the
first shows remarkable agreement for the viscous and inviscid calculations. From the
viscous calculation however, the cores are diffusing and the cores are closer together
after the passage than the initial separation. The result is that the second passage
of the viscous calculation shows merging or pairing.

In summary, leapfrogging was observed for two rings with initial Rep of 1000
each, an initial separation distance of one radius, and initial a/R’s of 0.1. Through
the first passage, the trailing ring was severly strained due to the inviscid straining
field, and a tail forms which eventually pinches off. Because of the viscous effects,
the ring which was initially in front merged with the other in an attempted second
passage.
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Figure 5.11a.

Figure 5.11. Evolution of two vortex rings of the same sign, each with
Rer, = 1000 and (a/R), = 0.1. (a)-(g) Vorticity fields at
several instants in time. The change in vorticity between the
thick lines is a factor of 10 larger than between the thinner
lines. Between lines of the same type, the vorticity varies
linearly. (h) Ring speed versus time. (i) Circulation versus
time. (j) Impulse versus time (k) Rate of change of energy
and dissipation versus time.
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Figure 5.11b.
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Figure 5.11c.
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Figure 5.11d.

Figure 5.11e.
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Figure 5.11f.

Figure 5.11g.
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Figure 5.11h. Speed of the ring versus time. Dots correspond to vorticity
plots (a)-(g)-
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Figure 5.11i. Circulation versus time.
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Figure 5.11j. Impulse versus time, computed by a multipole expansion
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Figure 5.11k. Rate of change of energy (—) and dissipation (+) versus
time.
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Figure 5.12a. Navier-Stokes calculation (same as fig. 11); (a/R), = 0.1,
Gaussian vorticity in core.

Figure 5.12a’. Euler calculations of vortex rings by Shariff (1987);
(a/R)o = 0.18, uniform vorticity in core.
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Figure 5.12b. Navier-Stokes calculation (same as fig. 11); (a/R), = 0.1,
Gaussian vorticity in core.

Figure 5.12b’. Euler calculations of vortex rings by Shanff (1987);
(a/R), = 0.18, uniform vorticity in core.
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Figure 5.12c. Navier-Stokes calculation (same as fig. 11); (a/R), = 0.1,
Gaussian vorticity in core.

Figure 5.12c’. Euler calculations of vortex rings by Shariff (1987);
(a/R), = 0.18, uniform vorticity in core.



Chapter 6

Concluding Remarks

6.1 Summary

A spectral method was developed which solves the incompressible Navier-Stokes
equations in an unbounded domain. In particular, the flow of interest is that of
vortex rings and their interactions. Because the the domain is infinite, and regions
of large gradients vary both temporally and spatially, this a more difficult problem
than those to which spectral methods are typically applied. The method is based on
divergence-free basis functions. A set of functions was developed satisfying several
constraints. In particular, each function is divergence-free. The solution is smooth
everywhere and the functions combined represent the correct decay of vorticity at
infinity. In addition, with the particular choice of functions, the linear terms in
the matrix equations (resulting from numerically approximating the Navier-Stokes
equations) are orthogonal (ie., diagonal) in two coordinate directions and banded
in the third. This is an important property when solving a three-dimensional, time-
dependent problem such that the computational time is manageable. Furthermore,
it is important in order to alleviate stiffness arising in flows where there is a large
range of length scales (ie., high Re flows).

Computations of axisymmetric rings demonstrated that the method works well,
and that it is very accurate in computing rings over extended periods of time.



6.1 Summary ' ’ 91

In contrast to most spectral methods (where typically the flow is assumed to be
periodic) the flow was solved in an infinite domain. Several tests demonstrated
that the far field was handled properly. The impulse, which is conserved in an
infinite domain with confined vorticity, was shown to be conserved to very high
accuracy. The drift at large times agreed with the analytic results of Rott (1988)
to four significant digits. The arguments leading to the analytic drift are based
on the behavior of the far field flow. The total integrated momentum was found
to be 2/3 of the impulse (within several significant digits), as expected (Cantwell,
1986). All of these are primarily a check of the behavior of the velocity at large
distances. Other diagnostics showed that the solution was accurate. The energy loss
was shown to be due only to the true viscous dissipation. The impulse was typically
conserved to several significant digits. Convergence studies of impulse showed that
the error in impulse does indeed go to zero properly as the time step is decreased
(ie., second order) and the resolution is increased (ie., faster than algebraic).

Computations were conducted over a wide range of Re. The algorithm devel-
oped is able to compute flows from thin rings at high Re to large time (Re — 0).
Two kinds of asymptotic studies were performed. The first is the limit of thin cores
in a time frame where very little vorticity is permitted to diffuse across the axis of
symmetry (I' & constant), with Rer as a parameter (0 < Re < 00). A common
theme was observed. A universal solution is approached after the transients associ-
ated with the starting condition have ended. For thin rings, it was shown that the
propagation speed of rings with several different initial core sizes collapsed onto an
envelope. That envelope corresponds to the time-dependent solution which would
exist if the initial condition were given by an infinitely thin ring, and depends only
on Rer. As expected, as Rer — 0 the solution and envelope of propagation speed
versus time is bounded. Furthermore, the vorticity distribution in the core is nearly
Gaussian and simply spreads with time. A more surprising result was the apparent
limit as Re — oo (note that we can only extrapolate finite- Rer results). For Rer
greater than around 200, curves of propagation speed versus time (normalized by
circulation and ring radius) collapsed. This means that a universal time-dependent
solution (ie., vorticity distribution) is approached for viscous solutions at sufficiently

high Re.

The second asymptotic limit considered was ¢ — oo or Re — 0. Flows were
computed until Re < 1 for several different initial vorticity fields. For all cases
studied, the solution returned to the drifting Stokes solution. The constant of

proportionality relating %% and T was found to be independent of the initial
condition. The large time solution, therefore, only remembers the impulse and
kinematic viscosity.

In computing the propagation speed for thin rings (where I' = constant), an-
other useful observation was made. The next order term was found to the asymp-
totic theory of the propagation speed of viscous vortex rings (Saffman, 1970) for
Rer = 0. Furthermore, this correction is observed to to be an upper bound for all
Re's. With this result, the range of validity of the asymptotic theory is quantified
for a/R as large as 0.35.



6.2 Future Work ‘ : 92

The computations demonstrated the behavior of viscous vortex flows not pre-
dicted by inviscid models: shedding of vorticity into the wake of a propagating ring,
and fusing of interacting rings. As postulated by experimentalists (Maxworthy,
1972), vorticity is shed behind a propagating ring. When considering the interac-
tion of two rings, we find that they are able to leapfrog. Furthermore, the effect
of diffusion is to smooth the vorticity peaks caused by the straining field, and for
viscous flow the rings will merge into one.

6.2 Future Work

Future work will involve extending the method to three dimensions. Studies
can then be made of mode selection associated with azimuthal instabilities, vortex
collisions and reconnections, and noise generation due to collisions. The addition
of a straining field could also be considered.



Appendix A

Translating and Expanding Coordinates

To compute rings over long time periods, it is very helpful to transform the
equations to expanding and translating coordinates. The center of the coordinate
system is translating with the centroid of the vorticity distribution (actually of the
centroid of wy). The rate of expansion of the coordinates is that of diffusion (\/¥t).
The transformation is chosen for convenience. We have transformed to some new
equations, slightly different from the Navier-Stokes equations. The two terms which
are not invariant are the scalar quantity, (®), and the velocity in the u x w term.
In the new coordinates, the dependent variables refer to the fixed coordinates while
the independent variables refer to the translating frame. This is of no consequence
since the results are easily transformed back to the original variables for plotting
and interpretation. In this appendix, the new equations are derived.

In Cartesian tensor notation, the transformation is given by:

~ (5",' —._X:,'(t)) E,- ETI,’ 51/2
Tr; = —_1/2 ~ =
1 =Wt ("1'1)
t=logt 5 =751

where fi(t) is the centroid of the vorticity distribution, and its time-derivative is
the ring speed:

Uith = —5 (4.2)
ﬁi(t) EU.-(t)?l/?
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In Cartesian tensor notation, the Navier-Stokes equations are given by:

ou; _ Ou; op 0*z;

ot Y 5T, T Tom T 55 o, (49)
A B c

The transformations are applied to equation (A.3), one term at a time. Starting
with the time-dependent term ( A), substitute for the dependent variable, and apply
the product rule:

Ju; 17, ( Uu; ) 1  Ou; 1

— === — — i A4)
D12 72 32 i (

5 B\3 - a; o7

Next, the chain rule is applied to term D:

Ou; _Ou; Ot  Ou; 0%, /
A AN (4.5)
~— ~
E F
Term FE is given by: N
ot QOlogt 1
% & 1 (A.6)
Term F' is given by:
0%Z; 0 [(@m—-Xi(t)]_ 1. 1 39Xt
ot ot [ 71/2 = o3 72 5t (4.7)

Combining the results from equation (A.5) and equation (A.6), term D becomes:

ou; 1 0%u; 1 /. Ou; 1 8?,(15) ou; }
& oior 2 (’”fazj) ~Fn ( & az,-) (48)
Using the chain rule, term B becomes:
0t; 1 01 (4.9)

oz; 7/ 0%,
Multiplying equation (A.9) by %; and transforming to u;, the convection term is:

_ 0t 1 . Oy

; = P A= A.10
uj a-:fj z3/2 Uj axj ( )
Following equation (A.9), the viscous term transforms to:
Fu 1
e At (A.11)
ijﬁfj z'/ axjal‘j
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Using the above results, the transformed governing equations are:

1 {Bﬂi ~ Ou; 0p o%u;

e\ TYeE, T o5 T oE0n (A1)
+l§.+l ] + 37 9X () dus .
2" 2\ oz, ot 0z;
In vector notation, this becomes:
du . =~ = o~
—5%+(u-V)u=——V + 9%
1. 1 o ~ 0 o~ o~ (A.13)
+-u+-(x-Viu+((U-V)u
2 2 N, !
G H
Next, vector identities are applied to term G and H. Term G is given by:
X-Ni=VE 1)~ (- NI-%x (Vxi)-lixiax (VxX) (A.14)
N RS e’

V]

Applying the same vector identity to H gives:
(- VNi=VU -1)-@-VU-Ux (VxW)-iaxtix (VxU) (L15)
: N e’ N

[

0 0

w

Substituting equation (A.14) and (A.15) into equation (A.13) gives:

(A.16)
[VE- W) -8 -%x3]+[V(U-1) - T x ]

Applying the identity, (u- V)i = V(T 1)/2 -1 x &), to equation (A.16) gives the
equations in expanding and translating coordinates which are solved numerically:

o4 VO VU= Uy X & (A.17)

where U4 and & are given by:

3] =
Al
|
‘o

Umoed = U — -

(A.18)

19
ol
=3¢
!
o
=

1| =

d=p+1- 1/



Appendix B

Divergence-Free Basis Functions

Vector spherical harmonics (VSH) comprise three vector functions which are
in turn functions of scalar spherical harmonics (see Appendix C for their defini-
tions and properties). These functions span the space of any vector function on
the surface of a sphere, i.e. they form a complete set. To represent an arbitrary
function in a volume, each of the three families of functions, X¢m(6,¢),Vem(9, ¢),
and Wyn(8,¢), is multiplied by scalar radial functions, Fi, (r,t), Fy,..(r,t), and
F 3/m (7‘, t) .

U= Fin(r,t)Xem(6,6) + Farn(r,)Vem(6, 8) + Fa,, (r, ) Wem(6,4) - (B.1)

tm

To find the divergence-free set which is complete, substitute equation (B.1) into the
continuity equation,

V-u= Z {V-(Fllngm) -+ V'(lemvlm) + v'(F3[mW(m)} =0 (Bz)
fm

From the properties of VSH (Appendix C), V- (F(r)X¢m) = 0 for any function F'.
On the other hand, both V,,, and W,,, contribute to V - u:

dF; £+2 dF. (-1
0=k ¥;" {—( 2m . | “: )Fgm>+k1( LR - )Fglm>}. (B.3)

dr dr
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where k; = (557)"/?, and ko = (5775)"/?. Divide equation (B.3) by ky Y;™ (recall

that the Y,™’s are orthonormal) and factor both terms,

1 d 1 d
2 g (r =+ gp

Hpy, )+ ks (r~1F, ) =0 (B.4)

where k3 =k, [k, = (7:71)1/2 . We wish to show that because of equation (B.4) the

functions Fy,, and F3, can be uniquely expressed in terms of one function, F" ,
such that Fz",'n(r) Xem 1s a vector potential:

VX(Ff (M) Xem) = Fa, (F)Vem(6, ) + Fs,.. (F) Wem(6, 6)- (B.5)

For the functional dependencies, Fglm(F;;n) and F3, (F, ;’m), see Appendix C. Fac-
toring these,

dFf € . ki d, 4 4
Frn = b | = LFE| = 2 L TR ) (B.)
dFf  (€+1) k2 d giq o , ~
F3‘m =k2 [ dr -+ . Flm :MTE;(T Flm(r7t))' (Bl)
Substitute equation (B.6) into (B.4), thus eliminating F3,
ky [EFf  2dF) L€+1) L] 1 d, _pi1n
ks [ dr? r dr T F‘"‘_ - r‘“’lzr-(r Foum) (B-8)
Note that k;/ks = k2. Factor the left hand side of equation (B.8),
1 d [ 508, sripty 1 d. e
k2;—:£—ﬁ$ [7‘ E—;(r Flm). = ;——_[‘FTE; r thm) (Bg)
And finally, integrate equation (B.9),
d
by 1 = (P ) = By (B.10)

which is in agreement with equation (B.7). Therefore, the complete set of three-
dimensional divergence-free basis functions is

u=F; (r,t) Xem(8,8) + VX (Ff (1, )X em (8, 8)) (B.11)

with two scalar radial functions, F,  and Ft";n. Using the continuity equation, we
have reduced the number of radial functions (and time dependent coefficients) from
three to two.

Note that the — modes can also be interpreted as deriving from a vector
potential, since

¢ \*[dF ¢+2
) F

Vv =i —— —_—
VX (E(r)Viem) Z<'2€+1 dr r

F] Xim (B.12)



C. Properties of Algebraic Mapping and Special Functions 99

Limiting forms at large radius:

2
lim (1-¢) ~ % lim £ =1 (C.5)

r—0o0

Limiting forms at small radius:

Em(l—¢) =1 lim £ & — (C.6)

r—0 r—0 Ti

Vector Spherical Harmonics

Vector spherical harmonics (VSH), X¢m, Vim, and Wy, , form a complete
set of vector functions on the surface of sphere. They are functions of scalar spher-
ical harmonics which, in turn, are functions of Legendre polynomials and complex
exponentials. With the aide of relatively simple expressions for their Laplacian and
divergence, the divergence-free subset is extracted from the complete set (see Ap-
pendix B). Furthermore, since the VSH functions are orthonormal, the mass matrix
is completely decoupled in § and ¢. Because the Laplacian of a vector spherical
harmonic function does not modify the angular dependence (see eqn. C.13), the
viscous matrix is also completely decoupled in 8 and ¢. Many of the relevant prop-
erties of these functions are given below, and a more complete list is found in the

paper by Hill (1933).

Orthogonality properties of VSH (C and D are X¢m, Vim, or Wip ):

2r T
/ / Com - (Do) 5in0d8dé = 51 Sttt S )
0 0

Definitions of VSH in terms of the scalar spherical harmonic, (Y™ ):

. e+1)1/2 ) - 1 Y™
Vi =7 { — Yt + 8
¢ { (2 +1 ¢ [(£+1)(2¢ + 1))/ 08

{

¢
—mY” . ~i oy
C.9
{[€(€+1)]1/2 Sin9}+q5 {[g(g+1)]1/2 50 } ( )

(C.8)

+(£ imYem
(6 +1)(2¢ + 1)]'* sin 6
6

Xem
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¢ \'? : 1 Yy
W =F Y™+ 6 ¢
f r{<2€+1) ‘ }+ {[e(zeﬂ)]‘/? a6

(C.10)
. mY;™
L3 im i/g .
[£(26+1)]/° sin6
Divergence and curl of X, :
V- [F(r)Xem] =0 (C.11)
(e \'P[dF ¢
VXX en] = <2‘3 + 1> ['3’"— - ;—F] Ve (C.12)
(E+1\P[dF | £41 o
i (2e+1) [dT+ . F] Wem
Laplacian of the product of VSH with an arbitrary radial function (F(r)):
V2 [F(T‘)ng] = Lg.*.l(F)ng
V2 [F(T)Xgm] = Lg(F)Xgm
VF(rYWem] = L1 (F)Wim (C.13)
_ 9 20 e+
| Bl Y
Scalar spherical harmonics:
m m eimq'>
Y"(0,¢) = ©7°(6) - G (C.14)
- 2+1 (L-m)Y? ]
or(8) = St il R (C.15)

2 £+ m)!

Hill’s definition (1953) for the Legendre polynomials, P;"(u), differs slightly from
that used here (i.e. by a factor of (—1)™).
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Associated Legendre Polynomials
Notation: P/*(p) = Qem(0)
Weight function: w(z) =1
Domain: —-1 < u <1, pu=cosf
Orthogonality:
1
2(£+m)!
P;" Pt dy = Seer C.16
[_1 £ [4 M (2€+1)(€—m)! 44 ( )
Rodrigues formula:
m (_l)m m dtt
Py (n) =g (1= P2 e T (ll - 1) (C.17)
First few polynomials:
m =20 =1 m =2
£=1 I : —(1 ,u2)1/2 not defined C
t=2 33 -1) =3u(1l — p?)!/? 3(1-4?) (C-18)
=3  p(p®=3) =G -1)(1 - 15u(1—p?)
Recurrence relations:
(m—£€—-1)P; + (20 +V)puP" —(m+ )P, =0 (C.19)
Derivative relations:
d
90 _Piuy;  £21 (C.20)
de
dQem 1 -
2{; = E{sz+1—(m+€)(€—m+1)P¢m ¥ m>1 (C.21)
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Shifted Jacobi Polynorials

The shifted Jacobi polynomials, G¢, are similar to those defined in Abramowitz

the notation of A&S, p = 2( -1 and ¢ = £ — 1/2. Second, the polynomials
are orthonormal with respect to the weight function, w(£). The properties are

summarized below.

Notation: Gfl,

Weight function: w(§) = (1 — £)£—§ ge—g

Domain: 0 <¢<1

Orthogonality:

Rodrigues formula:

n!

2(n+2£-—-2)!

/ G (€) G, (€) w(£)dE = S

GL(&) = (

First few polynomials:

den

(2(2¢ — 2)1)}/?

()

Gt =

Gt 1
E% - GITT (406 — 20 + 1)

14

1/2
£—1> [(8€ + 8)E% — (8¢ +4)¢ +2¢ — 1]

1/2

1 3 dn 1 3
(2n+‘2£——33, (E—1)y~trag—ts ((5 -~ 1)"”_75"”_3) (C.23)
2nrt=ig

(C.24)
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Recurrence relation:

n n —1)]"/?
MG
(2n2+4€n-—2n+2€2 -3 +1)

4n+f—-1)n+2)

[n(n + 2¢ — 2)]*/?
4n+e-1) Gra(€)

EGL(E) =

GA(8) (€.25)

Derivative relation:

dGL(§) _ n[(n+1)(n+2¢ - 1)/
e 4(n +0)
n(n+20—1)
T 4n+L—1)(n+0)
B [n(n +2¢ - 2)]3(n +2¢ - 1)
dn+e—1)

§(6—-1) Gria(6)

G(6) | (C.26)

Gr_1(€)




Appendix C

Properties of Algebraic Mapping
and Special Functions

Algebraic Mapping

The radial direction, 0 < r < oo, is mapped to the domain [0,1] in the new
variable £. The mapping, and its properties are shown below.

Definition:

Derivatives:

_ r? 2 _ rié
¢ r2 +r2 T= 1-¢ (€.1)
A 2 720 p3/2 o2 r
priala i GO CTE (C.2)
B¢ -2 ~2r2(3r2 — 12
d_rg = 712—(45 ~-1)(1 - 6)2 = (r:z(_*_rr’i’)srl) (C.3)
3
r2dr = %51/2(1 —&)3/2 g¢ (C.4)



Appendix D

Coordinate Singularities

In spherical polar coordinates, there are coordinate singularities near the origin
and on the polar axis, § = 0 and w. Therefore, an arbitrary expansion in these
coordinates can have discontinuous derivatives at these singular points giving, for
example, infinite vorticities or Laplacians. Our expansions involve vector spherical
harmonics multiplying arbitrary radial functions. The vector spherical harmonics
ensure that the function is smooth along the polar axis. We are left with the
task of finding appropriate radial functions, and therefore knowing the allowable
combinations of sin¢, cos@, cosé, sinf and r such that the basis functions are
smooth near the origin and are also complete.

Spalart (1988) derived the functional dependence for the general class of the
radial functions in polar and spherical polar coordinates, for scalar and vector fields.
This was accomplished by writing the solution at the origin in a Taylor series ex-
pansion, applying a Laplacian operator repeatedly, and requiring that all of the
derivatives remain bounded. From this, a set of constraints on the radial functional
dependence is found. He then shows that this is not only a necessary condition but
also a sufficient condition by counting the number of degrees of freedom imposed
by this dependence and the number of degrees of freedom available in the Taylor
expansion in z,y,z coordinates. By showing that these are equal, it follows that
this form of the radial expansion in the neighborhood of the origin, is both sufficient
and necessary for completeness. This appendix describes this procedure for scalar
and vector fields in spherical polar coordinates.
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For a scalar field, ¢(r,#6, ¢), we have an expansion of the form

g(r,0,8) =D _ hem(r) Yem(8, 6) (D.1)
{m

We wish to find the functional form of hgn(r) such that g(r,8,¢) is smooth near
the origin. Applying the Laplacian operator n times gives

(V)9 =Y (V) (hemYem) = D ((Le)*hem)Y/" (D-2)

Lm {,m

where L, is given by equation (C.13). For all the derivatives of g to be bounded
at the origin, ((L¢)"hem) must be bounded for all n. Now, write a Taylor series
expansion of hen about the origin:

o0
hem =Y apr?. (D.3)
Substitute equation (D.3) into (D.2) giving

(Vg =) (L)™(D_apr”) Y]
{m

p=0

=3 > (L))"

{,m p=0

(D.4)

Again, for all derivatives of g to be bounded, (L¢)"r? must be bounded. From
equation (C.13) it follows that

Lo(r) = (¢ = (g + £+ )72 (D.5)

From (D.5), it is clear that for L¢(r?) to remain bounded, ¢ must equal ¢ before
g — 2 < 0. Furthermore, repeated applications of the Laplacian (eqn. D.4) gives

(Lg)* r? ~ rP=2", (D.6)

and ¢ = p —2n. Since ¢ = ¢, then p — 2n = £ before p —2n < 0, or p = £ + 2n.
Combining this with equation (D.3) gives

o

hlm ~ z anrl+2n

n=40

o0
~ rt Z an(rz)"
n=0

~ rlflm(r2)

(D.7)
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where fem is a smooth function. This constrains the form of the expansion. The
next step is to show that these constraints are sufficient, or that the the number of
degrees of freedom in the spherical harmonic expansion is equal to the number of
constraints imposed by equation (D.7).

In a Taylor series expansion in z,y, z, we have

(oo}
g(z,y,2) = Z aijkl'iyjzk (D.8)
1,7,k=0

where z = rsinfcos¢, y = rsindsind, and z = rcosd. Writing equation (D.8)
in spherical polar coordinates gives

9(z,y,2) = Y ainr T si0(6,6)

t,7,k=0
(D.9)
[e ]
p=0 i+j+k=p

where the functions s;;x contain the angular dependence. We now ask how many
combinations of (i,j,k) there are for a given p, such that i +j + % = p, where
1>0,72>0,and £ >0.

First, we eliminate k& by writing

k=p—i—j (D.10)
or
o 120
720
By expressing equation (D.11) as
j<p—i, 20 (D.12)

we can count p — i + 1 values of j that are compatible with a given :. Therefore,
the total number of degrees of freedom is

P
Z -1+ 1) Z(p-{—l)—z)—Z(p-}-l)——Zz

1=0 1=0

p(p+1) (D.13)

=(p+1)° - =

_p+lp+2)

—
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Next, we count the degrees of freedom in the expansion given by (D.1). Com-
bining this with the radial dependence given by (D.7), we have

g~ > Y (6, ¢) (D.14)

{,m,n

where n >0, |m| <¢,£>0,and p=£+ 2n.

We begin by counting the number of values of m, giving 2¢ + 1. Furthermore,
write £ =p—2n, n >0, £ > 0. Now, we eliminate ¢ giving 2(p —2n) + 1 values of
m, where n > 0. Note that the upper bound on n is given by n < [121] where [3]

2
indicates the integer value. Therefore, the total number of degrees of freedom is

(3]
> ee-2m+1)=([5]+1) (22-2[F] +1). (D.15)

n=0

Considering the case of even and odd p separately, the equation (D.15) simplifies
to (Lt_l_)a(_g-_i-_l’_)_ , which is equal to the number of degrees of freedom (eqn. D.13).

Next, we generalize this to 3D vectors in spherical polar coordinates. The ex-
pansion is in terms of the radial functions multiplying the vector spherical harmonic
functions, X¢m, Vem, and Wy, . Applying the same procedure as that above, we
take the Laplacian of the expansion function and require that all of the derivatives
are bounded. From equation (C.13) for the Laplacian of each of the VSH functions,
we find p =€+ 2n for X¢pm, p=£€+142n for Vi, and p =4 —1+42n for Wy,
and the corresponding total number of degrees of freedom is (3p® + 9p + 8)/2. In
comparison with the number of degrees of freedom for the Taylor expansion in z,y,
z (ie., 3(p+1)(p+2)/2), we find that we have 1 too many degrees of freedom. This
apparent discrepancy can be accounted for by the special cases of X409 and Wy
which are equal to 0. If p is even it multiplies Xg ¢ and if it is odd it multiplies
Wy 0, making all of the degrees of freedom accounted for.

In summary, in order for an the expansion given by equation (2.3.1) to be
Cw (infinitely differentiable), the radial functions multiplying each of the vector
spherical harmonics, X¢m, Vem, Wem, must (near the origin) be of the form

r fxim(r?),
r“'lfwm(rz), (D.16)

4 fivim (1),

respectively, where the f's are smooth.



Appendix E

Gauss Quadrature

Gauss quadrature is an efficient and accurate method to evaluate certain types
of integrals. In particular, when an integrand is composed of the product of a poly-
nomial and a weight function of a Sturm Liouville polynomials (Legendre, Jacobi,
Chebychev, etc.) and the limits correspond to the same family as the weight func-
tion, then such an integral can be integrated exactly with a finite number of points.
It happens that for the problem which we are solving, integrals of this form arise
in transforms from real space to wave space and those defining global properties
of the flow (i.e. impulse, momentum, etc.). Actually, this property of our integral
expressions was a constraint which determined the basis functions.

Gauss quadrature frequently refers to integrals using Legendre polynomials of
as interpolating polynomials. Here we are using this term in a more general sense
to mean any interpolating polynomials which are solutions of a Sturm-Liouville
problem. This method is defined not only by weights multiplying the function at
each grid point, but also the particular choice of the grid points. By using these
extra degrees of freedom, a polynomial, Pan_1, of order 2V —1 is integrated exactly
using only N collocation points. This appendix develops this numerical method
and presents a scheme for determining the collocation points and weights for a
particular family of interpolating polynomials (Golub and Welsch, 1969).
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Theory
A definite integral, I, is evaluated numerically as a discrete sum

N

b
I= / f@)w(e)ds =3 f(za) An (E.1)

n=1

The particular quadrature rule is determined by the choice of the points, z, (N
degrees of freedom), and the weights, A, (N degrees of freedom), totaling 2N
degrees of freedom.

One means of determining the weights, A4,, is to approximate the function,
f(z), as a polynomial of degree N,

o a(z)
PN(‘T) ~ nZl (m _ -'L'n) al(xn)f(xﬂ) (EQ)
where a(z) = (z — z1)(z — z2)(z — 23)...(z — zN) is a completely factored N**
degree polynomial. Therefore, f(z) is exact at the points, z,. Furthermore, if
f(z) is a polynomial of order N — 1, then the approximation is exact everywhere
(the space of polynomials of degree 0,1,...,N —1 is of dimension N).

Substituting equation (E.2) into (E.1), and exchanging the sum and integral
operators gives

b N b
~ a(z)
JRCECEAS INER / e @ (B
With equally spaced points, z,, we get gives various Newton-Cotes formulas, among
which is the commonly used Simpson’s rule (w(z) =1).

It was pointed out by Gauss, that the values of z, represented unused pa-
rameters, giving the potential of a more accurate scheme. Indeed this is true when
T, is chosen such that a(z) is the n'*-degree polynomial which is orthogonal to
all lower degree polynomials over [a, b] with respect to the weighting factor w(z).
With this, a function, f(z) = P,ny-1 is integrated exactly with N collocation
points. The most common sets of orthogonal polynomials are those resulting from
solutions of a Sturm-Liouville problem. Therefore, if we are able to express our in-
tegrals in the form of equation (E.1) where the weight function, w(z), and interval,
[a,b], correspond to a family of polynomials which are solution of a Sturm-Liouville
equations, and if the remaining part of the integrand, f(z), is a polynomial, then
we can integrate the function exactly with a finite number of collocation points.



E. Gauss Quadrature ’ ) 110

Finding the Collocation Points and Weights

The mechanics of numerically computing the collocation points, z;, and the
weights in the quadrature formula, A;, are described below. For a more complete
mathematical treatment, see Golub and Welsh (ref.). We start with the recurrence
relation for the particular special functions of interest, cast this as an eigenvalue
problem, normalize the matrix, and solve for the eigenvalues and the eigenvectors.
The collocation points, z,, are the eigenvalues (which are also the n zeros of the
n'® degree polynomial) and the weights are found from the eigenvectors. This
procedure tends to be less sensitive to roundoff errors than that of finding the roots
of the nt* polynomial, and then the weights by a linear system.

For any solution of a Sturm-Liouville problem, a three term recurrence relation
can be found, showing the relation between the polynomials of different orders.

pi+1(z) = (aj+1 7 + bj+1) pj(z) — ¢jr1pj-1(7) | (E4)

for j =0,1,..,N —1, p_i(z) = 0, and po(z) = 1. The coefficients, a;;+1, bjt+1,
and c;4; are tabulated in several books, for example Abramowitz and Stegun (ref.).
Rewriting equation (E.4), .

zp(z) =Tp(z)+ a—lN-pN(a:)eN
exy =[0,0,...,0,1]T
p(z) = [Po(x),pl(z),pz(a:), ---,PN—l(iE)]T

1 '
ay ay 0 (E.3)
&2 _b 1
az az a2
T = - .
en-1  __bn-s 1
aN-1 aN-1 anN-—1
o by
0 aN an

The eigenvalue comes about from evaluating equation (E.5) at z = tj, and
setting pn(t;) =0,
tjp(t;) = Tp(t;) (£.6)
The matrix, T, is symmetric if the polynomials, p;(z), are orthonormal. If this is
not the case, a diagonal similarity transform is performed,

a; B 0
By an B’z
DTD ' =J= (E.7)
5N—2 anN-—1 BN-—I
0 Bn-1  an
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where

b; cir1 \'/?

01:‘ e el ,Bi = e y

ay Qi Qi1

to obtain a symmetric matrix.
The eigenvalues and eigenvectors of the matrix J are computed from a standard

eigenvalue solver. The eigenvalues, which are distinct and real since J is symmetric,
are equal to the collocation points. Knowing the eigenvalues, the eigenvectors are

easily obtained. The first component of the eigenvectors, g2 j 1s used to compute
the weights,

b
A, = qgj,uo fo = / w(z)dz. (E.8)

We have obtained the collocation points, z,, and the weights, A,, defining the
quadrature rule.



Appendix F

Computing Centroid and Impulse

Centroid and Propagation Speed

We begin with the definition of the centroid suggested by Lamb (1945), Saffman
(1970) and others.

1 I
X=-/"x“’ rdv (F.1)
v I?

For axisymmetric flow, equation (F.1) reduces to

1
X = /w yrdA F.2
Tl ], (F2)

As seen in figure F.1, A is the area enclosed by the half plane, —c0 < z < 00, and
0 <y < . The velocity of the centroid, U, is found by taking the time-derivative
of equation (F.2):

_dX 1 Ow

- Z7e.2
U= & T, ), o Yy rdA (F.3)
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Figure F.1. Definitions of Cartesian coordinates, and spherical polar co-
ordinates with ¢=constant.

In order to evaluate U for a given vorticity field, we use the vorticity equation
(obtained from the curl of the momentum equation).

6w

n =V x (u X w) + V3w ’ (F.4)
The rate-of-change of vorticity in equation (F.3) is then replaced by the right hand
side of equation (F.4). As mentioned by Saffman (1970), the viscous term does not
contribute to the velocity of the centroid, U. This can be shown by expressing
the Laplacian of wg in cartesian coordinates and rearranging the viscous term,
ry?V3w, such that it is expressed as total differentials. Integrating by parts and
considering the decay of vorticity at infinity, together with zero vorticity on the axis
of symmetry, shows that this term is zero.

Assuming that the flow is axisymmetric and without swirl (ugy =0, wr =wp =
0), the only component of the convection term is

10 1 Qugw
(Vx (1 xw))o = == 2=(ruswg) = ==

(F.5)

Substituting equation (F.5) into (F.3) (using eqn. F.4 and the fact that the viscous
term does not contribute), and integrating by parts, the velocity of the centroid
becomes

(3# —1) 3 :
=T /p/ / {Bur+u9 rond wg r drsinfudy (F.6)

where p = cos§. Therefore, given the velocity or vorticity (since one can be derived
from the other), the velocity of the centroid is computed using equation (F.6.).
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Impulse

For flows which are unbounded and unforced with a quiescent far-field, the
impulse is conserved. Because the governing equations conserve impulse, and it is
not built into the method, this serves as a very useful diagnostic. It is computed in
two ways. The first is by a multipole expansion (described below), and the second
is a direct integration using Gauss quadrature (see Appendix E).

Multipole Expansion:

The ¢ component of the vector potential as r — oo to leading order is

T, = isinﬁ

47 r?

(F.T)

where I is the impulse (Cantwell 1986). Furthermore T is related to the stream
function, ¥4 by

Ty
T, = F.8
®7 Tsind (£8)
Therefore,
I sin® 6
1V F.
6= 1= (£.9)
From this we can get the velocity component in the radial direction, u, as
1 6\I'¢ 117
= ——cosf EF.10
T 2sing 86  Mox o ( )
Now, our spectral expansion for the radial component of velocity is
u=> anl(l+ 1) fpl (F.11)

nt

where f;"l =(1- f)([“’l)/zfe/sz,(f). For £ =1 ,P} = cosd. Hence, we only need
the £ =1 terms. The velocity becomes

200 o S aniGLe) (F12)

where GL(€) is the normalized Jacobi polynomial family where p =1, q =1/2.

Next, we need to determine the leading term in u as r — co. or § — 1.

RNV

Uoo =2

c0s 02 (1 =€) Y _an lim Ga(€) (F.13)
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The results for limg;(1 — ) and lim¢_; Ga(€), described in detail below, are

}i_l;ri(l—f)zrf/r2 (F.14)

1/2
lim Ga(&) (%) (2n + 1) (F.15)

Substituting equation (F.14) and (F.15) into equation (F.13) gives

1/2
Uy = 2c0s 8 (-72;) r'f/r2 Z an1(2n+1) (F.16)

n
The velocity at a large radius, %., is then substituted into equation (F.10) giving

21/2
I=47r—7; eranl(Qn—i—l) A (F.17)

Limiting form of Jacobi polynomials as r — oo:

Abramowitz and Stegun (1972) give coefficients of the expansion for Jacobi
polynomials, P,Ea’ﬂ)(m) (in their notation) where 1 < z <1, of the form:

P{P)(z) = a7? i cm (2 —1)™. (F.18)

m=0

These polynomials, P,(,a”g ) (z), are related to shifted Jacobi polynomials through
A&S equation (22.5.2). In addition, we must scale the Jacobi polynomials in A&S
such that they are orthonormal. Applying these transfomations gives an expansion
in terms of 1 — ¢, where £ is the mapped coordinate (eqn. C.1). From equation
(C.5), note that the leading term for 1—¢ at large r is of order 1/r?. Therefore, the
limiting behavior as r — oo (or { — 1) is simply the first term in the expansion.
From this analysis, we find that the leading term as a function of n for orthonormal
shifted Jacobi polynomials at large radius is

9
lim G4~ \—\;—__;5(271 +1). (F.19)



Appendix G
MACSYMA Code

MACSYMA is a high level programming language which is able to manipu-
late symbols. In addition, it includes extensive libraries of algorithms for solving
mathematical problems such as integral equations, differential equations, etc.. It
is especially powerful in solving problems where the algebra becomes very lengthy
and involved. The elements of the mass and viscous matrix were computed ana-
lytically using MACSYMA (see section 2.2 and 3.4). One reason to compute these
analytically is to mimimize the roundoff error (see section 3.5).

We are interested in evaluating the integrals given by equations (3.4.1) and
(3.4.3), the mass and viscous matrices, respectively. The way in which this was done
was to express these integrals in terms of sums of Jacobi polynomials (using the
derivative and recurrence relations of Appendix C) and then apply the orthogonality
relations (Appendix C) to evaluate products of Jacobi polynomials. Therefore, the
problem proceeds in two stages. The first stage is to find the recurrence relations
and differential relations for the Jacobi polynomials used in this work. The next
stage is to write a program (or macro) to carry out the process of substituting the
recurrence and derivatives relations, and evaluating the integrals.

As discussed in Appendix C, we are using orthonormal, shifted Jacobi poly-
nomials. These are a modified form of those shown in Abramowitz and Stegun
(1972). The Jacobi polynomials are functions of two indices (n and ¢) in order
that the matrices are banded. This leads more complex recurrence, derivative, and
Rodrigues formulas. To avoid mistakes, this process is programmed: the listing is
entitled Jacobi. Three formulas are derived here. The recurrence relation, recur,
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the derivative relation, difeq, and the macro which generates the Rodrigues formulas
of any specified order, Rodrigues.

The second listing, Matrix Macros, shows several marcos which are called
in succession in order to evaluate the integrals, followed by the a listing of the
program used to obtain the elements of the mass matrix. The macros are: (1) repzi
which replaces ¢GY with the appropriate linear combination of G¢ (eqn. C.25),

¢
(2) repder which replaces occurances of £(1 — 5)% with the appropriate linear

combination (eqn. C.26), (3) getcoef extracts the coefficients in front of each of the
Jacobi polynomials, and (4) genmat uses the orthogonality relations and solves for
the matrix elements (ie. the diagonal and off-diagonal nonzero elements).

In the mass matrix shown by equation (3.4.1), there are two terms. Because
the there wasn’t sufficient memory to solve the entire problem at one time, each of
the two terms are computed during a separate session and the results from the two
sessions were combined to give the final answer. The macro which combines these
elements is forma.

The viscous matrix was computed in a similar manner. This matrix involves
another derivative, and 4 terms instead of 2, so the algebra is considerably more
involved. Again because of memory restrictions, the problem had to be solved in
pieces and then combined to give the final result.
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Jacobi

recurrance (recur) : s =ouildqg((recur],
(assume (n>=0} ,

assume (el>=1},

assume (ntel>=l),

/* coefficlents in Jacobi recurrance relation */

p:2*el~l,

gel-1/2,

al : factor(-(2*n* (n+p) +q* (p-1)) /((2*ntp)~2-1)},

a2 : factor(n *(ntq-1) *(ntp-1) *(ntp~q) /((2*n+p-2)* (2*n+p-1)"2*(2*ntp} )},

/* normalized Jacobl polynamial factors */

h(n] :N!*GAMMA (P4N) *GAMMA (~Q+P+N+1) *GAMA (Q+N) / ( (P+2*N) *GAVMA (P+2*N) **2) ,
h{n]:makefact (h[n}),

hin+l] :subst (n+l,n,h(n]),

h{n-1] :subst (n~1,n,h{n]),

NORVL: sqrt {factor (minfactorial (h(n+1] /h(n]))),

NORW2: st {factor (minfactorial (h{n=1] /h(nj}}),

/* recurrence relation for nommalized Jaccbl polynomials */
recur: y*g(n} (y) = NORML*g(n+l] {y} - al*g[n}(y)} + NOR@*aZ*q(n~1] (y)))$

Rodrigues {nmax, G, term2) & :=bul lg( [nmax, G, term2],
(p:2*el-1, quel-1/2, alpha:el~1/2, beta:el-3/2,
rho: (l-x)"alpha * (1+x)"beta,

g: 1 -x"2,
rhoy: subst (2*y-1,x,rho},
gy: subst(2*y-~1,x,q),
for n:0 thru rmax do
( an:(~1)"n *"2°n * factarial(n),
temml: (factarial (n)*gemma(n+p) ) /garmma (2*n+p),
h{n] :N!I*GRMA (P+N) *GAMMA (-Q+PHV+1)
*GAMMA (Q+HN)/ ((P+2*N) *GRMVA (P+2*N) ~2),
NoRM:sart (h{n]),
term2(n]: terml/(nomm*an*rhoy*2°n),
G[n] : factor (dLff (rhoy*gy™n,y,n) *term2(n]),
print ("G{",n,"] is", Gln])
}
)
)$

/* Differential recurrence relation*/
alpha : el -~ 1/2;
beta : el - 3/2;

g2 : (2*n + alpha + beta) * (1-xi"2);
gl : n*(alpha — beta - (2*n + alpha + beta) *xi);
¢ : 2* (n + alpha} * (n + beta);

eq:g2 * ALE(£(n] (xi),xi) = gl*f[n] (i) + gO*€[n-1] (xd);
eq: subst (2*xi-1,xi,eq);
eq: ratsubst (dLff (£n] (2*xi-1),x1)/2,dLEE(£(n] (2*xi~1),2*xi~1) ,eq)

z2:2"xd-1;

for kin-l thru n do

( term(k] :makefact ( gamma (2*k+p}/ (factorial (k) *garma (k+p)) ),
£k](2) := g[k] (xd)*tem(k] )7

ex:eq/temm{n],diff;
eq: factor (minfactarial (expand (eq) }) ;
eqeq/ (—4* (ntel-1});

/* eq2: narmalized differential relation */

c{nj ;ratcoeff (rhs (eq) ,g(n] (x1));

c[n-1] : factor (ratcoeff (rhs (eq) ,g{n-1] (x1))};
eq2:1hs(eq) = cn]*g(n] (xi) + NORR*c{n-1]*g(n~1] (xi);

/*as a check, eq2:lhs(eq) = c{nj*g(n] (xi) + c{n-1]*g(n~1](xi};*/
/*tren, is ratsimp(rhs(eq)-rhs(eq2)) =0 */

eq2: ratsubst (rhs (recur), lhs (recur) ,eq2);

lhsen?: factor (lhs (ea2)) ;
c2{n+l): factor (ratooeff {rhs(eq?),g(ntl] (k1))

c2[n] : factar (ratcoeff (rhs (eq2) ,g[n] (xi) )} ;
2 {n-1]:factor (ratcoeff (rhs (eq2},g(n-1] (x1)));
difeq:lhseq@?=c2 [n-1]*g[n-1] (xi) + c2{n]*g{n] (xi) + c2{n+l}*g(n+l] (xi};

ORIGINAL PAGE IS
OF POOR QUALITY
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Matrix Macros

/*Procedure to replace xi * Jaocchl palynamial with appropriate linear combin
repxi ( func , wid ) ::=buildg ( [ func, wid ],
for k: n—wid thru ntwid o
func : ratsubst ( Gt[k+l] (xi)*sqrt (etl)*sqrt(k+2*el-1}/(k+el)/4
4Gt (k] (xl) * (2*k"2+4*el *k-2*k+2*el"2~3*el+l) / ( (ktel-1) * (k+el) ) /4
Gt {k-1] (xd) *sqrt (k) *sqrt (k+2*el-2)/ (ktel-1)/4,
xi * gelk] (xl), func ) )$

/*Procedure to replace xi * (1-xi) * dGn/dxi with appropriate linear carbina
repder ( func , wid )} s:=bulldg ( ( func , wid ],
for k: nwid thru mwid do
func : ratsubst ( -Gtk+1] (xi) *k*sqrt (k+l)*scrt (k+2*el-1)/(k+el)/4
4Gt (k] (xi) *k* (k+2*el-1)/((k+el-1}* (ktel))/4 .
46t [k-1] (xd) *sqre (k) *sqrt (k+2*el-2) * (k+2*el-1)/ (ktel-1}/4,
xi * (1-xi) * Aff( Ge[k] (xi), xi}, func ) )$

/* Extract coefficlents */
getceef (func, wid, coef, funcout) ::= bulldy([func,wid, coef, fimeout],
{funcout : 0, .
for j:-wid thru +wid do
(tp:divide (func, Gt In+ 3] (cd), Gt nt]] (xi)),
coef[j}: factor (tmp(1]),
func:tmp(2],
funcout : funcout+coef [ §] *Gt [n+3] (xi)
)

)
s

gemmat (coefl, coef2, wid, matrix, amatQ, amatl) ::=
buildg( {coefl, coef?,wid, matrix,amac0,amatl],
(ccef2 [(~wid-2]:0, coef2{-wid-3]:0,
for 4:0 thru 2*widtl do
fratrix{n+]] :0,
for k: -wid thru wid do
(matrix{n+3] smatrix(n+3] + coefl (k] *subst (n+],n,coef2 (k~3])
}, matrix(n+]} :factor (matrix{n+j]},
print ("matrix element ",n+3, "is”, matrix{n+jl},
amat0(n]: ~(coefl[-1]*coef2[0}+coafl [0] *coef2[~1]+coafl {1]*coef2 (-2}
amatl[n] : —coefl(-1}*ccef2(-2],
amatQ(n+l]: ~(coefl (1] *subst (n+l, n, coef2{-1]})
+ coefl[0] *subst (n+1,n, coef2 [-2])),
amatQ[n+2]: —coefl[~1]*subst (n+2,n,coef2{-2])
}

1S

/* form the mass matrix elements by canbining the first and second parts */
forma (massl,mass2,almatQ,aZmac0, almatl, a2matl, wid, mac, matQ,matl) z:=
" butldg((massl, mass2,almat(, a2matC, almatl, a2matl, wid, mat, matQ,macl],
(for 3:0 thru wid do
(mat [n+}] : factor (ratsimp (~r1~3* (massl{n+j] + 2*mass2(n+j]})/6)} }},
macO[n]: facrtor (ratsimp(-rl”3*{ {massl(n]+almacO(n] }
+ 2* (mass2[n}+a2matO(n} ) }/6) ),
matO{n+1] : factor (ratsimp(-r1”~3* ( (massl(n+l]+almacO(n+l} )
+ 2% (mass2{n+1]+aZmatO[n+l] } }/6) },
mat0{n+2] : factor (ratsimp (-r1*3* ( (massl(n+2]+almacO(n+2] )
+ 2* (mass2{n+2] +aZmat0(n+2] )} }/6) ),
macl(nj: factor(ratsimp(-rl~3*( (massl(n]+almatl(n] )
+ 2* (mass2 [n]+a2matl(n] )} }/6) )
)
}$
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Listing for Mass Matrix

/* Butlding blocks of functions */
cxdr:2*sqre (ed) * (1-x4)~ (3/2) /x1;

nl: (1-xi)~((el+l)/2)*xi”~ (el/2)*Gt(n] (xi);
r: rl*sqre(xd)/sart (l-xi);

/* First half of mass matrix, first function */
frratsimp ((dxdr*dif£(Fnl,xi)—el*Fnl/r) ¥ (- (el-1} /2)* 1—=xi)" (- (el+2) /2});

repder (£,0);
repxi(£,0);

getcoef (£,1, cf, fsimp) $

/* First half of mass matrix, second function */
fp:fsimprxd ;

regxd (£p,1)

getcoef (fp, 2, cfp, fpsimp) $

/* With first and second function, fird the first half of mass matrix */
germat (cf, cfp, 1,massl, almacO, almatl) $

/* second half of mass matrix, first function */
/*£2: ratsimp ((dxdr*dL£E (Fnl, xi)+ (el+1)*Fnl/r)
*xin (—(el-11/2) * (Lxd) * (- (el+2) /2}); */

/*repder (£2,0); */
/*repxi (£2,0); */

/*getcoef (£2,1,cf2, £2simp)$ */

/* second half of mass matrix, second function */
/*€2p: £2simprxi; */

/*rermd (£2p,1); */

/*getooef (£2p, 2, cf2p, f2psimp) $ */

/* With first and second function, find the second half of mass matrix */
/*germat (cf£2, cf2p, 1,mass2, a2mat(,a2matl}$ */

/* form the mass matrix elements */
/*forma (massl,mass2, almat0, a2matQ, almatl, a2matl, 3, amat, amatC, amatl)$ */



Appendix H

Initial Condition Code

The task of solving the Navier-Stokes equations is divided into two separate
codes. The first (JC) takes an initial condition in the form of a vorticity distribution,
and finds the coefficients of the expansion approximating the vorticity field. The
second code (NS) starts with the coefficients computed by IC and marches the
solution forward in time, a specified number of time steps. This Appendix will
describe IC. We will begin by deriving the matrix equation which is solved to obtain
the initial condition. Then a flowchart for solving this problem is presented and
finally, a listing is attached.

The vorticity field for axisymmetric low in spherical polar coordinates contains
only one component

wo=3 ane(t) Le( far) P} (H.1)

né

Multiply both sides of equation (H.1) by (Lg:(fn,p)Pl,)* and integrate over the
domain, 0 £ g < 1 and 0 < r < co. Apply the orthogonality relations for
associated Legendre polynomials

2‘;’)5:1”2 nf/ Lulfud) Ll fe) Pdr = [ /_lw.»Ldfnu)Pe dyrd

(H.2)
Rearranging equation (H.2) gives a set of N coupled equations for each ¢, with
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o

SETUP

JACOBI

[LEGENDRE |

LIC = 1, LMAX

FORMRHS

solve for a_(l)

S |

Figure H.1. Flowchart of IC.

unknown vectors, ane,

26+1 [t ,
A [j[ cv¢f?(#)du}1&(fnw)r dr (H.3)

-1

[4
C’n n! Ane =

where C¢_, = f0°° Lo(fne) Le(fare) r?dr. This matrix, C¥ ,, is symmetric and
positive-definite, and has a semi-bandwidth of 5. It is related to the viscous matrix.

The elements of C/,, were analytically computed using MACSYMA.

For a specified vorticity distribution, the right hand side of equation (H.3) is
computed using Gauss-Legendre and Gauss-Jacobi quadrature. The matrix C¢ ,
is inverted by Cholesky decomposition, giving the coeflicients, ans.

A flowchart of IC is shown in figure H.1. The solution procedure is quite
straightforward. SETUP reads the inputs, N, N, L, L, and the parameters defin-
ing the initial vorticity field, and solves for the collocation points and weights
for Gauss-Legendre and Gauss-Jacobi quadrature. JACOBI evaluates the radial
basis functions at the collocation points, z = 1,..., N, for each n = NI and
¢ = LI. LEGENDRE evaluates the polar basis functions at the collocation points,
j=1,...,L., for each £ = LI. EXACT contains the initial conditions of Stokes
and thin rings, where the specified initial condition are evaluated at the colloca-
tion points. For a given £, FORMRHS computes the right hand side of equation
(H.3) and FORMA computes the elements of the matrix C{,,. The coupled set
of ordinary differential equations are then solved using the IMSL banded Cholesky
solvers LUDAPB (decomposes C¢_,) and LUELPB (solves the linear system) to
get the coefficients an, for that ¢. This procedure is repeated for each ¢.
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*CQLECK VCRT4
PARAMETER ( NMDIM=92, NCDIM=92, IMDIM=92, LCDIM-92,
1 PI = 3.14159265358979323846)
PARAMETER (IDWRITE=3, LREAD=S5, INRITE~6)
DOUBLE PRECISION XIDD, ROONSTD
COMMON/XTDOUBLY  XIDD (WD IM)
COMVERN/BCCLLOC/ XTI (NCDIM) , WIR (NCDIM) , CTH (LCDIM) , WITH (LCDIM) ,
1 R(NCDIM)
COMMON/BIRCCBL/ GVD (NVDIM, IMDIM, NODIM)}
COMMON/BLEGEND/ P1 (IMDIM, LODIM)
COMON/BVATRIX/ SIC (NVDIM, 6), SICINV (NDIM, 6) , RHS (D1M),
1 SOL (NvDIM)
COMON/BEXACT/ VOR (NCDTM, ICDIM)
COMMON/BCOOEFF/ TIME, ALP (NMDIM, IMDIM)
COMMON/BGNRL/ NMAX, NOCL, IMRX, LCOL, NVAXA (NWDIM} , IC
COMON/BPARY/ RADIUS, ROONST, VISC, GBM, CtR, ROANSTD,
1 IRIN, IFRAME
*DECK IQVAIN
PROGRAM MAIN
od

C wer

*CALL VCRT4

2 22 dd

MAIN ROUTINE

CALL SETUP

DO 25 LI = 1,IMAX

NVBXA (LT) = NMAX — LI +1
25 CONTINCE
CALL IEGENCRE
CALL JACCBI
CALL EXACT

C begin 1 index here:
DO 100 LI=i,IMAX
NRX = NVRXA (LI)

CALL FORMRHS (LI)
CALL FCRVA (LI)

¢ decarpcse matrix, SIC
N = NVAXA (LI)
NC =5
IA = NVDIM
IU = NMDIM
CALL IUDAPB (SIC,N,NC,IA,SICINV,IU,D1,D2,IER}

IF (IER.NE.O) THEN

WRITE (LWRITE, 1000} LT

FORMAT (X, 'WARNING: the error parameter is nonzero for LI =*,I2)
B IF

1000

c find SOL, given RHS and decawposed matrix, SICINV
CALL IUELPB(SICINV, RHS, N, NC, IA, SOL)

C Cepy resultant vector into ALP(NL,1I):
DO 95 NI=1,NRX
ALP (NI, L1)=SCL (NI)

95 CONTINUE
200 QONTINCE
CALL CUTPUT
sTCP
END
-
SUBROUTINE SETUP
c
*CALL VORTA
DOUBLE PRECISION XI1D,RADD
Input:

> the orcder of the matrix (Nmax).

> the rurber of collocation points {(Neol}.

> the greatest value of the quantum mumoer in theta
> the nurber of callocation points in theta (Leal).

(Imax) .

aaaon

C > the radius of the vortex ring (Radius).
[of > initial condition

READ (LREAD, 1040)
READ (LREAD, *) NMAX, NCOL, IMAX, LCOL
READ (LREAD, 1040)
READ (LREAD, *) RADIUS, VISC, GAM, CtR
READ (LREAD, 1040)
READ (LREAD, *) IC, IRUN, IFFAME
1040 FORWAT( 1X )
[
C call quad to get absissas and weights in the radial direction.
CALL QUAD (NCOL, WIR, XI, XIDD)

C Call QUADAZ to get The callocation paints in the theta direction.
CALL QUADAZ (LCOL, WI'TH, CTH)
(o
C Calculate RCONST.
IMIN = INT(REAL(NCOL}*3.2/5.)
XI1 = XI (IMIN}
RCONST = RADIUS* ((1.-XI1}/XI1)**(1./2.)
XI1D = XIDD (IMIN)
RADD = RADIUS
ROONSTD = RADD* ( (1.-XI1D}/XTID)**(1./2.)
Cc
C Find the radial coordinate at each collocation point.
DO 31 I =1,NOL
XI1 = XI(I)
R(I) = ROONST* (XT1/(1.-XI1))**(1./2.)
31 CONTINUE .

RETURN
D

SUBRCUTINE JACOBI
C this suotroutine is defined for p=i, g=1/2

*CALL VORT4
C G(NI, I} or G(NDIM,NCDIM)

DOUBLE PRECISION N,EL,G(90, 90}, DM, GNORM, XID, r1
Cc DOUBLE PRECISICN DGAMMA

REAL GAMVA,ARG],ARG2, SNORM

Rl = ROONST
Do 50 LI = 1,IMAX

EL = LI
campute the Jacoki Polynomials far all n and xi at a given EL.

this is only an intermediate result, it is not needed cutside of
this subroutine.

o
k=
"
e
=1
[
-

ARG2 = (2*El~1)/2.0
SNORM = SQRT (2.) *SQRT (GAMVA (ARGL ) ) /GAMMA (ARGZ)
GNORM = SNORM
G(1,I) = 1.0d+0
[+ n=1, NI =2
XID = XIDD(I)
G(2,I) = (4*EL*XID~2*E1+1)/DSQRT (2*EL~1)
10 CONTINUE
C general recurrance formula - at that paricular el.
C Note: 1f necessary, same memory can be saved by storing only
C —— 5 @'s at a given time... Gn+2, Gn+l, Gn, Gn-1, Gn-2.
DO 20 NI = 3,NMAXA (LI} +2
DO 30 I=1,NOOL

N = NI-2

XID =~ XIDD(I)

G(NI,I) = ({{4*N**2+(8*I~4)*N+4*EL**2—4*EL) *XID-2*N**2+ (2~
1 4*ELY*N-2*EL**2+3%EL~1} *GNI~1, I} + (-N*DSGRT (N**2+2*EL*N-2"N} -
2 EL*DSQRT (N**2+2*EL*N~2*"N) } *G(NI-2, 1)}/ ({(M+EL~1) *DSCRT (N**2
3 +2*CLAN2YEL-1))

CONTINUE
CONTINUE
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C Knowing the Jacchi palynamials, conpute (what ancunts to) the
C vorticity basis function.
DO 60 I = 1,NOOL

READ (LREAD, 1040)
READ (LREAD, *) TIME
1040 FORAT( 1X )

60

1
2

XID = XIDD(I)
cm = XID* ((EL* (4*EL+8) +3) *XID+ (—4 *EL~8) *E1~3) /R1**2
GWD(1,1I,I) = cdum * GNORM
dum = XID* (XID* (EL* (EL* (16*EL+64) +60) *KID+EL*
((~24*EL~92) *E1-82) +3} +EL* (EL* (8*EL+28)+22)-3)
/ (DSCRT (2*EL-1) *R1**2)
GW(2,L1,I) = cdum * GNORM

CONTTNUE

DO 70 NI = 3, NVAXA (LI)
N = NI-1

D080 I = 1,NOL

DM =
1((N* (N* (N* (4 "N+16*EL~4) +EL* (24*EL~12)-13) +EL* (EL* (16*EL~12) -26) +7)

WV AN OIS W

+EL* (EL* (EL* (4*EL~4) ~13) +7) +6) *DSQRT (N**4+ (4*EL+2) *N** 3+ (4 *EL**
2+10*EL~1) *N**2+ (12*EL**242*EL~2) *N+8*EL**2~4*EL) *G (NI+2, 1)+ (N
*(N* ((-8*N-32*EL+12) *N+ (32—48*EL) *EL+20) +EL* ( (28-32*EL) *EL+46) —
18) +EL* (EL* ( (8-8*EL) *EL+26) ~14)-12) *DSQRT (N**2+2*EL*N+2*EL~1) *
G(NI+1, I} + (N% (N* (N* (N* { (~8*N-48*EL+24) *N+ (88-128*EL) *EL~2) +EL* (
(128-192*EL) *EL+56) ~-36) +EL* (EL* ( (96~168*EL) *EL+186) -68) +4) +EL* (
EL* (EL* ( (40-80*EL) *E1+196)}—42) —64) +18) +EL* (EL* (EL* (EL* ((8~16*EL
Y*EL+68) ~10)—64) +2) +12) *G (NI, I} + (N* (N* (N* (8*N+32*EL~20) +EL* (4
8*EL~56) —8) +EL* (EL* (32*EL~52)~18)+26) +EL* (EL* (EL* (8*EL~16)~10) +
20) +6) *DSQRT (N**2+ (2*EL~2) *N) *G (NI-1, I)+ (N* (N* (N* (4*N+16*EL~12
Y4EL* (24 *E1~36)~1) +EL* (EL* (16*EL~36)—-2) +15) +EL* (EL* (EL* (4*EL~12
}=1)+15) ) *DSQRT (N* *4+ (4*EL~6) *N** 3+ (4 *EL**2-14*EL+11) *N**2+ (~4*
EL**2+10%EL~6) *N) *G (NI~2, I} } / ( (N* (N* (N* (16 *N+64*EL~32) +EL* (96*
EL~96)-16)+EL* (EL* (64*E1~96)-32)+32) +EL* (EL* (EL* (16*EL~32)-16) +
32) ) *R1**2)

C Cooy the double precision variable, XM, to the single precision array

GW (NI,LI,I) = DIM * QXCRM

80 CONTINUE
70 CONTINUE
50 CONTINCE
RETURN
END
c
o]
SUBROUTINE LEGENDRE
*CALL VORT4

C Calulate legerxire polynomial, P1(LI,J).
DO 63 J=1,1COL

635

X1=CTH(J)
SCX2=SCRT (1. -X1*X1})
P1(1,J) =02

P1(2, 7} =3.*X1*S0X2

CONTINCE

DO 64 LI=3, IMAX

L~LI~-1
FACL=(2.*L+1.)/ (L+1.)
FAC2=L/ (L+1.)
FAC3~ (2.*L+1.) /L
PO 65 J=1,1COL
X1=CTH (J)
Pl (LI, J)=FACI*XI*P1 (LI-1, ) -P1 (LI~2, J) /FAC2
CONTINUE

CQNTINCE

ETURN

END

OO0

SUBROUTINE EXACT

*CALL VCRT4

C Calculate velocity at collocation points.

X = 0.0

RNUT = VISC * TIME
IF (IC.EQ.1} GOTO 10
IF (IC.EQ.5) GOTO 15
IF (IC.EQ.2) GOTO 20
IF (IC.BQ.3)} GOTO 30
IF (IC.EQ.4) GOTO 40

C Gaussian ring with an image. Input: R, a/R, Gamma/nu

(o4

10

CONTINUE
FIXED = 1.2564392281
CAPR = RADIUS
DO 110 J=1,1COL
STH = SIN( ACOS(CTH(J)) }
DO 100 I=1,NOOL
RL = R(I}
ARG = EXP( —(FIXED/CtR=*2)* ( l.+ (R1*R1/{CAPR*CAPR})
1 - 2.*RI*STH/CAPR } )
ARG2 = EXP( —(FIXED/CtR**2)* ( 1.+ (RL*R1l/(CAPR*CAFR})
1 + 2.*RI*STH/CAPR ) )
VOR(I,J)= FIXED *GAM * (ARG-ARG2)
1 /(PI* VISC *CAPR**2 *CtR**2)

100 CONTINUE
110 CONTINUE

GOTO 1000

C Two Gaussian rings with an image. Input: R, a/R, Gamma/nu

c

15

CONTINUE

FDED = 1.2564392281

CAPR = RADIUS

X =1.5

DO 115 J=1,ICaL

DO 105 I=1,NCOL

X1 = R(I})*CTH(J) - XX
Xb = R(I}*CTH(J) + XX
Y = R(I)*SIN(ACCS (CTH (7} })
RNl = SQRT(X1**2 + Y**2)
THNL = ATANZ (Y,X1)
STHN1 = SIN(THN1)
Rb = SORT (Xb**2+ Y**2)
THD = ATANZ (Y, Xb)
STHNb = SIN(THNb)

ARGl = EXP( - (FIXED/CtR**2)* ( l.+ (RU*RNL/{CAPR*CAPR})
1 - 2.*RNL*STHN1/CAFR ) )

ARG2 = EXP( ~—(FIXED/CtR**2)* { l.+ (RN1*RNL/(CAPR*CAPR})
1 + 2.*RNL*STHN1/CAPR )} )

ARGlb = EXP( ~(FIXED/CtR**2)* ( l.+ (RNb*RNb/(CAPR*CAPR))
1 - 2.*RNo*STHND/CAPR ) )

ARGZb = EXP( =-(FIXED/CtR**2)* ( l.+ (RbO*RNb/ (CAPR*CAPR))

1 + 2.*RNb*STHNO/CAPR ) )
VOR(I, J)= FIXED *GAM * (ARG]+ARGIb-ARG2-ARGZD)
1 /{PI* VISC *CAPR**2 *CtR**2)

105 CQONTINUE
115 CONTIME

GOTO 1000

C Gaussian ring without an image. Irput: time

(o}

C vorticity of a vortex ring of r(core)/R which is determired by "TRE"

20

CONTINUE

DO 130 J=1,100L
STH = SIN( ACOS(CTH(J)) )
0O 140 I=1,NCCL
Rl = R(I})
ARG = RADIUS*RADIUS + R1*R1 + DX*DX
1 ~ 2.*Ri* (RADIUS*STH + DX*CTH(J))
IF (ARG.IT.0.) ARG = O.
RHO = SQRT (ARG)
EXPFUN = EXP (-RHO*RHO/4.)
VOR(I,J) = (GAM/VISC) * EXPFN / (4.*PI)
CONTINUE

130 CONTINUE

GOTO 1000
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C Stokes ring. Inpur: time
C

30 CCNTINUE
C Angular dependence:
DO 150 J=1,1COL
STH = SIN(ACOS (CTH(J}))
C Radial dependence:
DO 160 I=1,NCOL
VOR(I,J) = STH*R(I)*EXP( ~R(I})**2/4. )
1 /(TIME*16,*PI**(3./2.))
160 CONTINUE

150 CONTINUE
GOTO 1000
C Two Stokes rings. Input: time
Cc
40 CONTINUE
C A test case for the low Re no. vortex ring

XX = 3.0
C Angular deperdence:
DO 170 J=1,L00L
DO 180 I=1,NCOL

¢ Two Stckes vortex rings:
C Radial dependence:
X1 = R(I)*CTH(J) - XX
X2 = R(I}*CTH(J} + XX
Y = R(I}*SIN(ACCS (CTH(J) })
RNEWL = SQRT (X1**2 + Y**2)
THNEWL = ATANZ (Y, X1}
RNEWZ = SORT (X2**2+ Y**2)
THNEW2 = ATANZ (Y,X2)
VOR(I,J) = ( .S*SIN(THNEW1) *RNEW]l *EXP(-RNEWL**2/4.)
1 + S*SIN(THNEWZ2) *RNEW2 *EXP (~RNEW2**2/4.)
2 }/ (TIME*16.*PI** (3./2.))
180 CONTINUE
170 CONTINUE

1000 CONTINUE

RETURN

END
c
c

SUBROUTINE FORMA (LI)
*CALL VORT4

INTEGER NI,LI

C DIC(NDDM, 6)
DQUBLE PRECISION N, EL,DIC (50, 6)
DOUBLE PRECISION DSQRT

EL = LI
C Form DIC (initial condition Matrix).

pIca,1l) = 0.
DIC(1,2) = Q.
pIca,3) = Q.
DIC(1,4) = Q.
DIC(1,5) = 0.

DIC(2,1) = 0.
DIC(2,2) = 0.
DIC(2,3) = 0.
DIC(2,4) = O.
DIC(3,1) = 0.
DIC(3,2) = 0.
DIC(3,3) = Q.
pIC(4,1) = 0.
DIC(4,2) = 0.

DIC(5,1) = O.

DIC(1,6)

1(EL* (EL* (EL* (EL* (EL* (EL* (128*EL+832)+1952) +1936) +536) -356)-258) -
1 45)/(EL*(EL*(S512*EL+1536)+1024))

DIC(2,5) =
1(EL* (EL* (EL* ((~32*EL~208) *E1~496) ~536) -258) ~45) *DSQRT (B*EL* *3-12*
1 EL**2+6*EL~1)/ (EL* (EL* (S12*E1+1536)+1024))

DIC(3,4) =
1DSCRT ( (2*EL~1) /EL) * (EL* (EL* (EL* (EL* ( (~64*EL~576) *EL-2032) 3552}~
1 3196)-1380)-225)/ ((EL* (EL* (256*EL+1536)+2816) +1536) )

DIC(4,3) =
1(EL* (EL* (EL* (16*EL+112) +288) +324) +135) *DSQRT ( (48%EL**4+48+ELs* 3~
1 12*EL~3) /EL}/ ((EL* (EL* (256*EL+1536)+2816)+1536) )

DIC(5,2) =
1 (EL* (EL* (EL* (16*EL+160)+552) +792) +405) *DSQRT ( (96 *EL**4+ 96 *EL¥* 3~
1 24*EL~6)/(EL**2+EL) )/ ((EL* (EL* (512*EL+4608) +13312) +12288) )

DIC(6,1) =

1 ((~4*EL~24) *EL~35) *DSORT( (3840*EL**7+21120*EL* *6+43200%EL**5+
1 37920*EL**4+8400*EL**3~7560*EL**2-4860*EL-810) / (EL**2+EL) )
2 /((EL* (EL* (S12*EL+4608) +13312)+12288))

DIC(2,6) =
1 (EL* (EL* (EL* (EL* (EL* (EL* (EL* (128*EL+1472)+6624)+14768) +16744) +8468
1 )+1002)+9)+135) / (EL* (EL* (EL* (512*EL+3072) +5632) +3072) )

DIC(3,5) =
1 (EL* (EL* (EL* (EL* (EL* ( {(~64*EL~576) *£1~1936)~3056) -2476)-1372}~795) -
1 225)/((EL* (EL* (256*EL** (3.0a+0/2.0d+0) +1536*DSORT (EL) ) +2816
2 *DSORT(EL))+1536*DSQRT (EL) } )

DIC(4,4) =

1DSCRT ( (6*EL+3) /EL) * (EL* (EL* (EL* (EL* (EL* { (~64*E7~896) *EL-50C8)
1 -1420C8)-21420)-15960) -4059) +54C) /  (EL* (EL* (EL* (256 *EL+2560)
2 +8960)+12800) +6144))

DIC(5,3) =

1 (EL* (EL* (EL* (EL* (EL* (128*EL+1440) +6288) +13424) +142C8) +6282) +405) *
1 DSORT({12*ZL+6)/ (EL**2+EL) ) / ( (EL* (EL* (512*EX+4608)+13312)
2 +12288))

DIC(6,2) =
1 (EL* (EL* (EL* (EL* (L6 *EL+224) +1120) +2372) +1735)-175) *DSORT ( (480%
1 EL**4+2400*EL**3+4320*EL**2+3240*EL+810) / (EL**2+EL) } / { (EL*
2 (EL* (EL* (S12*EL+7168) +36352) +78848) +61440) )

DIC(7,1) =

1 (EL* ((~24*EL-252) *EL-858) —945) *DSORT ( (160*EL**5+800*EL**4+1440*EL
1 **3+1080*EL**2+270*EL) / (EL**2+3*EL+2) } / { (EL* (EL* (256*EL+3072) +
2 12032)+15360))

DIC(3,6) =
1 (EL* (EL* (EL* (EL* (EL* (EL* (EL* (128*E1+2240)+16352) +64752) +151464)+21
1 3988)+178730)+80661}+14715) / ((EL* (EL* (EL* (512*EL+5120) +17920) +2
2 5600)+12288))

DIC(4,5) =
1DSORT (6*EL+3) * (EL* (EL* (EL* (EL* (EL* ( (-64*EL-832) *E1-4368)~12272) -
1 20972)-23468}-16499)-5385)/ ( (EL* (EL* (EL* (512*€1.+5120) +17920) +
2 25600)+12288))

DIC(S,4) =
IDSORT ((12*EL+6) / (EL+1) ) * (EL* (EL* (EL* (EL* (EL* { (~64*EL~1280) "I~
1 10544)-46152)-115804)-165336) ~123605) ~36975) / ( (EL* (EL* (EL*
2 (256*EL+3584)+18176)+39424)+30720) )

DIC(6,3) =
1 (EL* (EL* (EL* (EL* (16*EL+232)+1300) +3538) +4714)+2485) *DSCRT ( (480
1 *EL**4+24CO*EL**3+4320%EL**2+3240*EL+810) / (EL+1) } / ((EL* (EL*
2 (EL*(2S6*EL+3584) +18176) +39424) +30720} )

DIC(7,2) =
1 (EL* (EL* (EL* (EL* (EL* (96*EL+2064) +17568) +75384) +165950) +186081) +727
1 65)*DSCRT ( (4C*EL**2+80%EL+30) / (EL**243*EL+2) } / ((EL* (EL* (EL~ (512
2 *EL+9216)+60928) +175104) +184320) )
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DIC(8,1) =
1 (EL* ((~24*EL~324) *EL~1434) -2079) *DSQRT ( (2240%EL**6+23520*EL** 3+

1
2

98560*EL**4+208880*EL* *3+233100*EL**2+1 277 S0*EL+26250) / (E1+2) )
/ ((EL* (EL* (EL* (512*EL+9216) +60928) +175104) +184320} )

DO 70 NI = 4,NVRXA (LI)

N = NI-1

DIC (NI, 6) =
1 (N® QI* (N* (N*® (N® (N* (N* (N* (N* (96*N+960*EL-480) +EL* (4384*EL~3632) +672

Vol AS oo O@ R dwhr

J+EL* (EL* (12032%EL~12032) +2624) +192) +EL* (EL* (EL* (22048*EL~22432
)+32) +136) —4026) +EL* (EL* (EL* (EL* (28352*E1~25120)~18528)-3760)-1
0900) +9390) +EL* (EL* (EL* (EL* (EL* (26080*EL~16432)-48640}-16104) +1
926)+38413)-2097) +EL* (EL* (EL* (EL* (EL* (EL* (17024*EL~5120)—62944)
~29696) +42232) +68288) -16618)~10272) +EL* (EL* (EL* (EL* (EL* (EL* (EL*
(7552*EL+256) —46464)—28432) +65608) +69752) ~32292)~21489)+5085)+E
L* (EL* (EL* (EL* (EL* (EL* (EL* (EL* (2048*EL+640) -18816) ~13920) +42976
}+41656)-27816) ~21458) +7626)+1440) +EL* (EL* (EL* (EL* (EL* (EL* (EL* (
EL* (EL* (256*EL+128)-3264) —2784) +10800) +12024) ~7684) ~11258) —864)
+2106) +540) 7 { (N* (N* (N* (N* (N* (1024 *N+6144 ¥EL~3072) +EL* (15360*EL~
15360) -5120) +EL* (EL* (20480*EL~30720)--20480) +15360) +EL* (EL* (EL* (
15360*E1~30720} -30720) +46080) +4096) +EL* (EL* (EL* (EL* (6144*EL~153
60)~20480) +46080)+8192)~12288)+EL* (EL* (EL* (EL* (EL* (1024*EL~3072
}-5120)+15360) +4096) ~12288) ) )

DIC{NI+1,5) =
1 QN* (N* (N* (N* (N (N* ( (~16*N-128%EL) *N+ (~480*EL~128) *EL~40) +EL* ((-108

W -GS WN

8*E1~768) *EL~240) ) +EL* (EL* ({~1680*EL~2176) *EL—472) +736}+431)+EL
* (EL* (EL* { (~1856*EL~3584) *EX~288) +2944) +1724} ) +EL* (EL* (EL* (EL* (
(~14C8*EL~3456) *EL+560) +5696) +2800) ~1016)-105) +EL¥ (EL* (EL* (EL* (
EL* { (~-640*EL~1792) *EL+1056} +5504 ) +2152) —2032) -210) } +EL* (EL* (EL*
(EL* (EL* (EL* { (-128*E1~384) *EL+480) +2016) +360)-2088) ~838) +402) +1
80) *DSQORT (N** 2+2*EL*N+2*EL-1) / { (N* (N* (N* (N* (1024*N+5120*EL} +
10240*EL**2-5120) +EL* (10240*EL**2-15360) } +EL**2* (S120*EL**2~
15360) +4096) +EL* (EL**2* (1024 *EL**2-5120) +4096) ) }

DIC(NI+2,4) =
1 QN* (N* (N (N* (N (N ( (—32*N-256%EL~128) *N+ (-928*E1~1040) *EL-64) +£L* (

e WM NN LW N

(~1984 *E1~3648) *EL~816) +256) +EL* (EL* ( (-2720*EL~7136) *EL-3024) +1
976) +1022) +EL* (EL* (EL* ( (~2432*EL-8384) *E1~5248) +5696) +6200) +146
8) +EL* (EL* (EL* (EL* ( (~1376*EL~5904 ) *EX1~4800) +7880) +12626) +4047) -
971}4EL* (EL* (EL* (EL* (EL* ( (—448*EL-2304) *EL-2256) +5296)+10844)+3
656)~3427) ~1641) +EL* (EL* (EL* (EL* (EL* (EL* ( (—64*EL~384) *E1~432) +1
392)+3396)+1104) ~2477) -2085) ~450) *DSCRT (N**4+ (4¥EL+2) *N**3+
(4*EL

w4 Q4 TO*EL-1) *N** 2+ (L 2¥EL** 24 2%EL~2) *N+-BAEL**2—4*EL) / ( (N* (N* (N* (
N* (N* (512*N+ 3072*EL+1 536) +EL* (7680*EL+7680) -2560) +EL* (EL* (10240
*ET4+15360)~10240) —7680) +EL* (EL* (EL* (7680*EL+15360) ~15360) -23040
)+2048)+EL* (EL* (EL* (EL* (3072*EL+7680) ~10240)-23040)+4096) +6144)
$EL* (EL* (EL* (EL* (EL* (S12*EL+1536) ~2560) ~7680) +2048) +6144) ) }

CONTINUE

DO 80 NI = 4,NVAXA (L)

N = NI-1

DIC(NI+3,3) =
1 (N* (N* (N* (N* (N* (48*N+288*EL+288) +EL¥ (800*EL+1664) +744) +EL* (EL* (128

WO~ NS W N

O*EL+4096) +3872) +1056) +EL* (EL* (EL* (1200*EL+5184) +7304)+3440) +51
}+EL* (EL* (EL* (EL* (608*EL+3296) +5968) +3376) 1146} -1242) +EL* (EL* (
EL* (EL* (EL* (128*EL+832) +1792) +992)~1368) -1836) ~540)

*DSQRT (N**6+ (

G*EL+6) *Nw* S+ (1 2*EL* *2+36*EL+10) *N**4+ (8*EL**3+T2*EL**2+64*EL) *
N**3+ (48*EL* * 34+ 1 32%EL¥*2+24*E1~11) *N**24 (88*EL* *3+72*EL**2-22*E
L-6) *N+48*EL**3-12*EL) / ( (N* (N* (N* (N* (2048*N+10240*E1+10240) +EL*
(20480*EL+40960) +10240) +EL* (EL* (20480*EL+61440) +30720) ~10240) +E
L* (EL* (EL* (10240*EL+40960) +30720) ~20480) -12288)} +EL* (EL* (EL* (EL*
(2048*E1+10240) +10240) -10240) -12288) ) )

DIC(NI+4,2) =

DA D L R S

DSORT (N+1 ) *DSORT (N+2) *DSORT (N+3) *DSORT (N+4) *DSQRT (N+2*EL1)

*DSGRT (N+2*EL) *DSCRT G2+ EL+1) *DSCRT (W+2*EL+2)

* (N* (N* (N* (N* (N* (32*N+1927EL+288

J+EL* (480*EL+1456) +832) +EL* (EL* (64C0*EL+2944) +3424) +672)+EL* (EL*
(EL* (4B0*EL+2976) +5280) +2216) =702} +EL* (EL* (EL* (EL* (192*EL+1504)
+3616) +2416) =1236)-1242) +EL* (EL* (EL* (EL* (EL* (32*EL+304) +928) +87
2)-534)-1197)—405) / ( (N= (N* (N* (N* (N* (2048*N+12288*EL+18432) +£L* (
30720*EL+92160) +51200) +EL* (EL* (40960*EL+184320) +204800) +30720} +

7
8
9

EL* (EL* (EL* (30720*EL+184320) +307200) +92160) ~-53248) +EL* (EL* (EL* (
EL* (12288*EL+921 60) +204800) +92160) -106496) -49152) +EL* (EL* (EL* (£
L* (EL* (2048*EL+18432) +51200) +30720)-53248) ~49152} } }

DIC(NI+5,1) =
1DSQRT (M+1) *DSORT (N+2) *DSQRT (N+3) *DSORT (¥+4) *DSRT (N+ 5)

~N OGN

*DSQRT (N+2*EL~1) *DSORT (N+2*EL) *DSCRT (N+2*EL+1)

*DSQRT (N+2¥EL+2) *DSORT (N+2*EL+3) * (N* (N*

( (~16*N-64*EL~128) *N+ (—96*EL~384) *EL~344) +EL* ( (—64*EL-384) *EL—6
88)-352) +EL* (EL* ( (-16*EL~128) *EL~344) ~352) =105} / ({N* (N* (N* (N* (2
048*N+10240*E1+20480) +EL* (20480*EL+81920) +71680) +EL* (EL* (20480
EL+122880) +215040) +102400) +EL* (EL* (EL* (10240*EL+81920) +215040) +
204800) +49152) +EL* (EL* (EL* (EL* (2048+EL+20480) +71680) +102400) +49
152)))

80 CNTIME

C convert dauble precision matrix to single precision.
DO 20 NI = 1,NBX

SIC(NI,1} = DIC(NI,1)
SIC(NI,2) = DIC(NI,2)
SIC(NI, 3) = DIC(NI,3)
SIC (NI, 4) = DIC(NI,4)
SIC(NI,5) = DIC(NI,S)
SIC(NI,6) = DIC(NI,6}
IF (LI.BQ.1) THEN

BD IF

20 QONTINE

RETURN

END
c
c

SUBROUTINE FCRVRHS (LI}
C
*CALL VORT4

L=1I

RL = REAL (L)

CLl = (2.*RL + 1.) / {2.*Rt* (RL + 1.))

Rl = ROONST

C Fom RHS vector.
DO 150 NIP=1, NRX

165
[

. Test function:

TESTF = R1**4 * GUD (NIP,LI, I} * (1-XX(I))**{((RL-3}/2)

* XI(I)**(RL/2) /2

an immer locp begins here for the dauble integration
sML = 0.

Weight function of quadrature method:

weth = 1.

DO 165 J = 1,IC0L

SIML = SML + VOR(I,J)*P1 (LI, J)*WITH (J) /WFth

CCONTINUE N

welght function of quadrature method

SM = SM + SIML*TESTF*WIR ()

160 CCNTINUE

RHS(NIP} = SM * CL1

150 CONTINGE
RETURN
END
Cc
o
SUBROUTINE QUTPUT
c
*CALL VCRT4
C
WRITE (IDWRITE,1002)
WRITE (LDWRITE,*) TIME,O.
WRITE (LDWRITE, 1000}
WRITE (IDWRITE, *) ROONSID, RADIUS, TIME
WRITE (ILDWRITE,1007)
WRITE (LDWRITE,*} VISC, GAM, CtR
WRITE (ILDWRITE,1001)
WRITE (LDWRITE,*) IRUN, IFRAME
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WRITE (LDWRITE,1005)
WRITE (LDWRITE,*) NVBXA(1),NCOL,IMAX, LOOL

WRITE (IDWRITE,1009)
DO 5 LI=1,IMAX
WRITE (LDWRITE,*) LI,NVAXA(LI)
5 CONTINUE

WRITE (IDWRITE, 1010}
DO 10 I=1,NOOL
WRITE (LDWRITE,*) I,XICO(I},WIR(I)
10 CONTINUE

WRITE (IDWRITE, 1020}
DO 20 J=1,LO0L
WRITE (IDWRITE,*) J,CTH(J),WITH(J)

c P(k+l)= ( £(k+1) *x +d(k+l) }*P (k) = e(k+1)*P(k-1}
c
c D(I) : dlagonal of symmetric tridiagonal matrix
D(I)=-A2K/A3K
IF(1.BQ.N) GOTO 100

C
o F=ALK/A3K
m~1.0
o
K=I
c replace coefficients here

TEMP= (2. *K+PC~2. ) * (2. *K+PC~1.) * (2. *K+PC)

A3SK=TEMP* (2, *K+BC+1, ) * (2. *K+PC-1.)

AAK=K* (KHQC-1. ) * (K+PC~1.) * (K+PC-QC) * (2. *K+PC+1.)
¢ ————end replace coeff

c
20 CONTINUE E=AAK/A3K
B(I+1)=DSCRT (F*E)
WRITE (IDWRITE,1030) c
DO 30 LI=-1,IMPX 100 CONTIME
DO 40 NI=1, NP (LI) c
WRITE (IDWRITE,*} LI,NI,ALP(NI,LI) c Find eigenvalues and eigenvectars
40 CONTINUE WANTX= ,TRUE.
30 CONTINUE NDIM=~90
CALL TRIEIGD (NDIM,N,D, B, WANTX, X}

10C2 FORMAT (SX, ‘'TD*E', 13X, *ZCENT') c

1000 FORMRT (5X, ‘RCONST',1QX, ‘RADIUS®, 10X, ‘TIMEO') ¢ ——————note that this is also particular to the polynamial—-—
10C1 FORMAT (SX, 'IRIN',10X, ‘IFRAME') ¢ CAICUIATE MJo = integral from a to b of the weight function
1005 FORAT (9K, 'NYRX',8X, 'NCOL', 8X, ‘IMAX', 8X, 'ICOL') c where a and b are the amnropriate limits for the polynomial

1009 FORMAT (SX, 'LINDEX*, 10X, 'NVBX (L)"') WIT=PT/2.
1007 FORRT ( 5X, 'VISC',12X, ‘GAM*,12X, 'Care to Ring radius') c
1010 FORAT ( 10X, 'I',7X, ‘XI(I}', 10X, *WIR(I)}"') ¢
1020 FORMAT ( 10X, 'J*,7X, 'CTH(J) *, 10X, 'WITH(D *) ¢ Nomalize eigenvectors
1030 FORMAT ( 9K, 'LI', 10X, *NI*,7X, *ALP(NI,LI)') DO 20 J=1,N
¢ X=0.0
RETURN 000 I=1,N
END XT=X (1, )
c XN=XT*XTHN
[ 30 CONTINCE
X (1,3 =X,/
SUBRCUTINE (XUBD (N, WIS, XIS, D} 20 CONTINGE

: C
This routine calculates the weights and absisscas for arthogonal polynamia ¢ calculate weights

[od

¢ quadriture routines. It can be used far any arthogonal polynamials by DO 40 J=1,N

¢ replacing the cocefficients AK1,AK2,AK3,AK4 with the aporcoriate ones from X=X (1, J)

¢ the 3 temm recurrance relaticn (p. 782 Abraancwitz and Stegun) WT (J) =XT*XT*WTL

C 10/11/86: modified for p=1, g=1/2. check case worked to all signif. figur 40 ooNTIME

[ C

1OGICAL WANTX C Arrange Points In Asscending Qrder.
REAL XIS(90),WTS(90) DO 200 M=N, 2,-1
DOUBLE PRECISION D(90),B(90),X (90, 90} ,WT (90), ALK, AZK, DO 210 I=2,M
1 A3K,AdK,F, E,WIT,XT, XN, TEMP, PC, CC, PT IF (O (I-1) .LT.D(I)) GO TO 210
o TEMP=D (I-1)
PI = 3.14159265358979323846 D(I-1)=D(I}
[of . D(I)~TEMP
BC = 1.0 TEMP=T (I-1)
C = 0.5 WL (I-1}=WT(I)
D(1} = QC/(PC+L.) WT (1) ~TEMP
I=-1 210 CONTINUE
K=I 200 CONTINUE
F~=1.0 C
TEMP= (2. *K+PC-2. ) * (2. *K+PC~1.) * (2. *K+PC) DO 220 J=1,N
AJK=TEMP* (2. *K+PC+1.)* (2. *K+PC-1.) WIS (J) =WT ()
AdK=K* (KHQC—~1. ) * (K+PC-1.) * (K+PC-QC) * (2. YK+PC+1.) XIS(J}=D (N
E=A4K/AIK 220 COONTINUE
B{(I+1}=DSORT (F*E} [of
o} . RETURN
DO 100 I=2,N END
K=I-1 c

C irput the following coefficients for a given polyncmiai c

¢ ref. Abramowitz and Stegen p. 782 SUBROUTINE QUADAZ (N,WTS,DS)

o] reolace coefficients here C This routine calculates the weights and absisscas for orthogonal polynamia
TEMP= (2. *K+PC=-2,) * (2. *K+PC-1.) * (2. *K+PC) ¢ quadriture routines. It can be used for any orthogonal polynamiais by
ALK=TEMP* (2. *K+PC+1.) * (2. *K+PC-1.) ¢ replacing the coefficlents AKl,AKZ2,AK3,A44 with the aporooriate cres fram
A2Km— (2. *K* (K+BC) +QC* (PC-1.} ) *TEMP ¢ the 3 temm recurrance relation (p. 782 Acraanowitz and Stequn)

AJK~TEMP* (2, *K+PCt+1.) * (2. *K+PC-1.)
A4K=K* (K+QC-1.)* (K+PC=1.) * (K+PCQC) * (2.*K+PC+1.)
—————end replace coeff:

IOGICAL WANIX

REAL WIS(139),0S(139)

REAL D(139),B(139),X(139,139),WT (133},
1 AlK,A2K, A3K,A4K,F,E,WTT, XT, XN, AV

O 00

Carbine coeffiectents t be in the recurrance ferm: c
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AU = 0. [
DO 100 I-1,N SUBROUTTNE TRIEIG (NDIM, N, D, E, WANTX, X)
K=I-1 INIEGER NDIM,N
C input the fallowing coefficients for a given polynomial IOGICAL WANTX
¢ Ref. Abramowitz and Stegen p. 782 [ DOUBLE PRECISION D (NDIM),E (NDIM) , X (NOIM, NDIM)

Cc replace coefficients here
ALK=K-AMJ+1.
AZK=0.
AJKe2. *K+1.
A4K=K+AMJ
¢ ————erd replace coeff:
C

C Camdine cceffilecients t be in the recurrance farm:
c P(k+l)= ( £(k+1) *x +d(ktl) }*P(k) =~ e(k+l)*P(k-1})
c
¢ D(I} : dlagonal of symmetric tridiagonal matrix

D (1) =-A2K/A3K

IF (I.EQ.N) GOTO 100

Cc
F=A1K/A3K
Cc
K=I
Cc replace coefficients here
A3K=2.*K+1
A4K=K+AMJ

¢ ~———end replace coeff:
c

E~A4K/A3K
B(I+1)=SQRT (F*E)
[
100 QOONTINUE
C
¢ Find eigenvalues and eigenvectors
WANTX= ,TRUE.
NDIM=139
CALL TRIEIG (NDIM, N, D, B, WANTX, X)
c

¢ —————rnote that this is also particular to the palynanjal——
¢ CAICUIATE Mo = integrai from a to b of the weight function

c where a and b are the appropriate limits for the polyncmial
WII=2. .
C
C
C Nomalize eigenvectors
Do 20 J=1,N
x=0.0
DO 30 I=1,N
XT=X(I,J)
KN=XT*XT+XN
30 CONTINUE .
X(1,3=X(1,J) /XN
20 OONTINUE
C
C Calculate weights
DO 40 J=1,N
X=X(1,n
WT (J) =XT*XT*WIL
40 COONTINUE
C

C ARRANGE POINTS IN DESCENDING OFDER.
DO 200 MN,2,~1
DO 210 I=2,M
IF (D(I-1).GT.D(I)) GO TO 210
TEMP=D (I-1)
D(I-1)}=D(I}
D(I)~TEMP
TEMP=WT (I-1}
WT (I-1) =T (1)
WT (I)~TExP
CONTINUE
CONTINUE

210
2C0
Do 220 J=1,N
WIS (J) =T (J)
BS (7 =D (J)

220 CONTINUE

(8]

RETURN
BD

(8]

REAL D(NDIM},E (NDIM) , X (NDIM, NDIM)

[
C Camputes Elgenvalues And Eigenvectars Of Real Tridlagonal Symmetric
C Matrix

NDIM = declared row dimension of A (AND X).

N = order of A

D = N-VECIOR. output, eigenvalue

E = N-VECTOR. lower diagonal of symmentric matrix E(2)...EM)

WANTX = .TRIE. Lf elgenvectors desired, .FALSE. if not.

X = N-BY-N MATRIX
IF (WANTX) THEN QUTPUT X(*,J) IS EIGENVECTOR ASSOCIATED
WITH EIGENVALLE D (J}.

anonnaooO0n

DOUBLE PRECISION ALPHA, BETR,GAMMA, KAPPA,AIJ, T,C,S,F
REAI, AIPHA,BETA,GAMWA, KAPPA,ALJ,T.C,S,F
DOUBLE PRECISIQN DABS, DSORT

ann

Initialize X As An Idenity Matrix
DO 101 I~1,N
DO 102 J=1,N
X, =0.0
CONTINUE
X(L,I)=1.0
101 CONTINUE
C TRIDIAGOMNAL QR ALGCRITHM
o4 IMPLICIT SHIFT FROM ICWER 2-BY-2
c

102

20p027TMB =2, N
M = N+2MB
ML= M1
ITER = Q.
L=1

21 E@ = 0.

(e e]

FIND L SUCH THAT E(L} IS NEGLIGIBLE

L=M
S = DABS (D (L-1)) + DABS(D(L)}
22 5 =ABS(D(L-1)) + ABS(D(L))
c T = S + DABS(E(L))
T = $ + ABS(E(L))
IF (T .EQ. S ) @0 T0 23
L=1L-1
IF (L.GE.2) GO TO 22

C
o IF EQM IS NEGLIGIELE, THEN D(M) IS AN EIGENVALE, SO ...
[of
23 IF (L.EQ.M GO TO 27
IF (ITER.GE.30) GO TO 27
ITER = ITER + 1
c
c FORM IMPLICIT SHIFT
C

T~ Od1) ~DMI/(EM + EQD)
[of S = DQRT(1. + T*T)

S = SQRC(1. + T*T}

IF (T.LT.0.) S =-S

S =DM - EM/(T+S)

E(L) =DQ) - S

F = E(L+1)
[of
C CHASE. NONZERO F DOWN MATRIX
o

D026 J=1L, 1L
C T = DABS(E(J)) + DABS(F)

T = ABS(E(J}) + ABS(F)

C ALPHA = T*DSQRT ((E(J)/T)**2 + (F/T}**2)

AIPHA = T*SORT({E(J)/T)**2 + (F/T)**2)
C = E{(J) / ALFHA

S = F / ALPHA

BETA = S* (D(J+1) = D(J)) +2.*C*E(J+1)
E(J) = ALPHA

E(F1) = E(J+1) ~ C*BETA

T = S*BETA
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D) =D(3) + T
D(J+l) = D(J+l) - T
IF (J.EQ.MML) GO TO 24
F = S*E(J+2)

E(J+2) = ~C*E(J+2)

c
24 IF (NOT.WANTX) GO TO 26
0251 =1, N
T = X{I,J)
X(I,J) = C*T + S*X(I,J+1)
X(I,J+1) = S*T ~ C*X(I,J+1)
25 CONTINUE
Cc
26 CONTINCE
@ 10 21
c
27 CONTINUE
RETURN
END
c
SUBROUTINE TRIEIGD (NDIM,N,D, E, WANTX, X}
INTEGER NDIM,N
1O0GICAL WANTX
DOUBLE PRECISICN D (NDIM),E (NDIM) , X (NDIM, NDIM)
c REAL D (NDIM) , E (NDIM) , X (NDIM, NDIM)
c

C Camutes Eigenvalues And Elgenvectors Of Real Tridlagonal Symmetric
C Matrix

NDIM = declared row dimension of A (AND X).

N = order of A o

D = N-VECTOR. outpuc, elgenvalue

E = N-VECTCR. lower diagonal of symmentric matrix E(2)...E®N)

WANTX = .TRUE. Lf eigenvectors desired, .FALSE. if not.

X = N-BY-N MATRIX
IF (WANTX) THEN QUTPUT X(*,J) IS EIGENVECTOR ASSCCIATED
WITH EIGENVAILE D(J).

aaoanaoaonananan

DOUBLE PRECISION ALPHA, BETA,GAMMA, KAPPA,ALT, T,C, S, F
REAL ALPHA, BETA,GAMMA, KAPPA,ALJ, T,C,S,F
DOURLE PRECISIQN DARBS, DSQRT

a

aon

Initialize X As An Idenity Matrix
DO 101 I=1,N
Do 102 F=1,N
X(I,7=0.0
102 CONTINUE
X(I,1)=1.0

[of IMPLICIT SHIFT FRM IOWER 2-BY-2

20D0027M8=2, N
M = N2-MB
ML o= M1
ITER = O.
L=1

21 E@ = 0.

FIND L SUCH THAT E(L) IS NEGLIGIBLE

0onon

L=M
22 S = DABS(D(L-1)) + DABS(D (L))
22 S = ABS(D(L-1)) + ABS(D(L})
T = S + DABS(E(L))
T = S + ABS(E(L))}
IF (T .EQ. S) G0 T0 23
L=L1
IF (L.GE.2) GO TO 22

an

IF EM) IS NEGLIGIBLE, THEN D(M) IS AN EIGENVALLE, 0 ...

s NeNe}

23 IF (L.EQ.M) Q0 O 27
IF (ITER.GE.30) GO TO 27
ITER = ITER + 1

FORM IMPLICIT SHIFT

[eNeNe]

T= (DM1) ~DM)/(EM + EM)
S = DSCRT(1. + T*T)

anao
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S = SQRT(l. + T*T)
IF (T.LT.0.) S = =S
S =DM ~ EQ/(T+S)
E(L) =D(} -5
F = E(L+1)
CHASE NONZERO F DOWN MATRIX
DO 26 I =L, ML
T = DABS(E(J)) + DABS(F)
T = ABS(E(J)) + ABS(F)
ALPHA = T*DSQRT((E(J)/T)**2 + (F/T)**2)
AIPHA = T*SORT((E (J)/T)**2 + (F/T}**2}
C = E(J) / AIPHA
S = F / ALPHA
BETA = S* (D(J+1) - D(J)) +2.*C*E(J+1)
E(J) = AIPHA
E(J+l) = E(J+1) - C*EETA
T = S*BETA
D) =D + T
D(J+l) = D(J+1) = T
IF (J.EQ.MM1) GO TO 24
F = S*E(J+2)
E(F+2) = —C*E(J+2)
24 IF (.NOT.WANTX) GO TO 26
DO251I=1, N
T = X(I,J)
X(I,J) = C*T + S*X(I,F*1}
X(I, F+1) = ST = C*X(I,J+1)
25 CONTINUE
26  CONTIME
Go 0 21
27 CONTTNUE
RETURN



Appendix I
Navier-Stokes Code

In this appendix, the Navier-Stokes code is described and the listing is included.
We begin by deriving the working equations for the axisymmetric Navier-Stokes
calculation. Next, a brief flowchart outlines the structure of the code by showing
the first level of subroutines. A detailed flowchart follows of the algorithm used in
transforming to and from coefficient space (in O(N?) operations). Next, we include
a FLOP (floating point operations) trace showing the breakdown of the speed and
percent of total time spent in each subroutine. Finally, the code is listed.

To get the working equations, we start with the weighted residual equation,
(2.2.1). As described in section 2.2, the term involving the gradient of the pres-
sure drops because of the divergence-free expansion and boundary conditions. The
weighted residual equation therefore reduces to (2.2.3). Next, we substitute the
axisymmetric velocity expansion, (3.2.1), into (2.2.3) and take the time-dependent
coefficients outside of the integrals. The result is a set of N x N coupled ordinary
differential equations for each ¢:

d +
AL (D=2 —yBE () afp =< uxw, VX (ff,Xin) > (I1)
Differencing equation (I.1) in time then gives
Al (0)Ad, = B!, (0)d, - (3Q,, - Q) At (1.2)

The elements of the matrices A¥, (¢) and BY, (£) were computed analytically using

n‘n

MACSYMA. output as FORTRAN statements, and pasted directly into the code.
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At the start of a calculation, these non-zero matrix elements are computed once (in
double precision) and stored (in single precision). From this, the differenced form
of the matrices, A::,n(é) and Bl,n(ﬁ), are computed and stored in place of A:,n(é)
and B}, ().

Figure (I.1) illustrates the structure of the Navier-Stokes solver, where the
words with bold capital letters denote subroutines. The chart on the left is the
general flowchart while the one on the right describes TIMEINT in more detail.
INITIAL reads the coefficients defining the initial vector field obtained from IC.
Next, JACOBI and LEGENDRE, solve for the basis functions at the collocation
points and store them in arrays. For each index £, the mass matrix (FORMA) and
viscous matrix (FORMB) are evaluated and combined appropriately in PREINT
for the difference equation. TIMEINT then advances the coupled set of ordinary
differential equations in time. The flowchart to the right describes the steps taken
to advance the solution in TIMEINT.

The program marches forward in time for a specified number of time steps,
ncloop, with the nonlinear term treated as a forcing on the right hand side of the
equation and computed pseudospectrally. Several diagnostics such as ring speed,
impulse, momentum, etc. are also computed in the FORCING, and every so often,
data is written to a file in the form of numbers and plots. The advancement of the
centroid is computed from the ring speed, the coeflicients are advanced in time, and
the process repeats.
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iloop = 1, ncloop

[LEGENDRE |

|
m—' write output file to
CRAY and plot

contours (occationally)

|

compute centroid
(i.e. ring speed)

I

advance coefficients by
solving rhs of egn. 1.2

CONT. advance time

Figﬁre I.1. Flowchart of the Navier-Stokes solver, NS.

[TIMEINT
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@en a(nl)forn=1,..., ND
“l=1,..,L
{

J

UT2 = UT2+ GR(n,Li) a(n,))

UT1(j) = UT1(j) + UT2 * PO(l,))

i=1,Nc '__j
j=1.te |
UT1() =0
l=1,L
UT2=0
'
n=1,N()
j=1,Le
cont @
J=|1,Lc
u(i,j) = UT1())

Output u(i,j) fori=1,...Nc
j = 1,...,LC

Figure I.2. Flowchart for transforming to and from coefficient space in

O(N?) operations.



RANK INDX  NAME

PROGRAM TIME =
2] © PROGRAM
NOTES:

CLOCK PERIOD =

EXECUTION DATA:
TIME EXECUTING IN CPU -

TIME WAITING FOR 1/0 -

TIME WAITING SEMAPHORE -
JOBTIME -

MEMORY ¢ 1/0 WAIT TIME

-njos Surssorjdes| 10 90e1Y (suoryesado jurod Juneoy) JOTI "€'1 2an31 g

“(swry Te30) oYy Jo ¢/ 1 ‘Ajfenioe) (11°¢) 21n3y ur umoys uony

MINIMUM JOB SIZE iWORDS;
MAXIMUM JOB SIZE (WORDS
MINIMUM FL EWORDS -
MAX IMUM FL (WORDS) -
MINIMUM JTA EWORDS; -
MAX IMUM JTA (WORDS

/

ONE USER DIVISION

1 8 FORCING 2401
2 7 TIMEINT 1
3 17 MATMULT 156000
4 2 JACOBI 1
5 12 PLTCONT 3
6 16 CONDI2 18
7 13 CONTXX 12
8 9 MATMULT2 15665
9 5 FORMB 65
10 18 OUTPUT2 161
1 1 INITIAL 1
12 18 OUTPUT 1
13 4 FORMA €5
14 11 STREAMF 3
15 68 PREINT 65
16 14 FRANGE 17
17 3 LEGENDRE 1
18 15 CONSCL 9

NAD Yt e NGO =N

CALLED TIME(SEC)
2.
5.

82E+02
60E+01

.70E-01
.88E-01
.68E~-01
.23E-01
.14E-01
.87E-01
.55E-01
.@8E-01
.15E-02
.21E-02
.05E-04
.2BE-04

359.1224085050 SECONDS
1 3.59E+02 3.59E£+02 100.

sse FLOP TRACE s»+ VERSION 1.0
AVE-TIME  %AGE ACCUMX
1.176-01 78.45 78.45
5. 60E+01 15.61 94.06
5.46E-05 2.37 96.43
4 83£+00 1.34 97.78
9.03E-01 9.75 98.53
1.08E-01 0.54 99.07
8.08E-02 ©.27 99.34
5.67E-085 ©.25 99.59
5.67E-03 @.10 99.69
2.01E-03 0.9 989.78
2.14E-01 0.06 99.84
1.87E-01 8.5 99.89
2.38E-83 0.64 99.54
3.606-02 0.3 99.97
1.10E-83 ©0.02 99.99
2.476-03 ©.01 100.00
5.05£-04 ©.00 100.00
2.54E-05 0.00 100.00

00 100.00

9.50E-09 SECONDS

TIME WAITING TO EXECUTE —

TIME WAITING IN INPUT QUEUE ~
MEMORY o CPU TIME (MWDSsSEC) -

EMWDS.SECg
MEMORY ¢ SEM WAIT TIME (MWDSeSEC) -

0000:06:22.9583
0000:43:12,2579
0000:00:04,6046
0000 :00:00.0000
0000:06:25.9199
0000:00:00.0212

605.78656
2.67601
0.00000

17408

1829376

13312

1822720

4096
7168

ASSUMED TRACE OVERHEAD = 300-608 CP PER CALL

= 3 MULTIPLIES AND 1 RECIPROCAL

A Dyt b a OU= =N =D

ADDS

.02E+10
.97E+08
.00E+08
.15E+407
.75E+86
.64E+06
. 1BE+06
.01E+07
. 78E406
.00E+00
.88E+03
.79E+03
.61E+06
.54E+06
.19€E+05
.67E4+05
.50E403
.35E+02

.1E+1IO

MULTS
7.49E+09
6.77€+07
5.22E+407
9.45E+07
2.59E+06
1.52E+06
8.95€+04
5.24E406
5.57E+06
©.00E+00
7.22E+04
1.63E+04
2.62E+086
1.53E+06
1.09E£+05
©.00E+00
2.81E+04
5.14E4+02

7.72E+09

RECIPS
1.37E407
2.64E+04
1.56E+05
7.85E405
5.29E405
3.58E+05
1.79E+04
1.57E+04
6.81E+04
©.00E+00
2.86E+02
©.00E+00
4.15E+04
1.36E+04
1.08E+04
©.00E+00
5.34E+02
5.00E+01

1.57E+07

FLOPS MEM/FLOP MMEM/S
1.77E+10 1.34 84
7.64E+408 2.28 31
1.52E+408 2.26 40.
1.37€+08 1.3 29.
5.87E406 5.75 12.
3.52E406 6.66 12
1.28E+06 - 5,26 6.
1.53E407 2.27 39.
9.42E406 0.82 21
©.00E+00 0.00 16.
7.44E+04 22,98 7.
2. 116404 83.65 9
4.26E+406 0.86 23.
3.08E+86 1.80 51
8.40E+05 2.18 25.
1.67E+485 1.58 6.
3.82E+04 ©.84 63.
9,99€+02 1.89 8.
1.88E+10 1.39 72.

EC

.54
.07

36
31
47

.02

97
16

.05

29
98

.42

75

.47

59
29
73
26

87

MFLOPS
62.92
13.64
17.89
28.34

2.17
1.80
1.33
17.25
25.57
0.00
0.35
.11
27.52
28.53
11.74
3.98
75.53
4.38

52.41

9pOp SIN03G-IdIABN ']

291
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*CODECK ARPAYS
PARMMETER( NCD=92, L(D=92 )
PARAMETER ( NMD=92, IMD=32 )
CQADN/PARMZ/ NMAXA (LMD}, ALP (NVD, IMD)

C double precision stuff:
DCUBLE PRECISION XIDD, ROONSTD
COMON/DOUBLY  XITO (NCD) , ROONSTD

C quantities at collocation points:
CMON/QOLL/ XT (NCD) , CTH (ICD) , R(ND),

1 UR (NCD, LCD) , UTH (NCD, XD,
2 QEG (D, LD}, SFUNC (N, 1D}, SA (ICD) ,
3 XY (NCD, 1CD, 2) , F (NCD, LCD)

C general quantities:
COMA/QRL/ WIR(NCD) ,WITH (IKD) , STH (ICD)
C radial basis functions
COMAV/JAC/ GR (WD, LMD, NCD) , GTH (NVD, IMD, NCD) , GV (D, IMD, NCD) ,
1 RIAC XD} , FIAC (NCD) , F2JAC (NCD)
C Palar basis functions:
COMON/LEGENDRE/ PO (IMD, 1(D) , P1 (IMD, LCD)
C Impulse calculation:
OCOMMIN/IMPULSE/ CIMP (NVD)
C Mass and viscous matrices:
COMMON/MATRIX/ AMAT (NVD, 6), BMAT (WD, 6), BVEC (D},
1 ARATS (ND, €, IMD), BMATS (NVD, 6, IMD},
2 AMATE (ND, 4, IMD)
C Energy ard dissipation calculations
COMON/ENERGY/ DISV (NVD) ,ENV (0D}
C Arrays which are local to particular subroutines
DOUBLE PRECISION G, ROFIINC, FUNC
COMIN/STAC/ G (D, NCD) , ROFUNC (NCD) , FUNC (NCD)
COMMON/SPREINT/ AIN (ND, 6) , BTEMP (NVD, 6)
COMMN/STIME/ RHS (VD) , CONWML (NvD, IMD) , DELSOLN (NVD)
Cc 1 » DALPOLD (NvD, IMD)
COMIN/SFORC/ VELRA (LCD) , VELTA (1D} , VORTA (1CD) , OOEF (IMD),
1 POFUN (IMD, 1CD) , RD2 (NCD) , SUMIA (ND) , SLM2A (NCD},
2 PIDIM(NMD)} , P2DUM (NVD ), CONV (NMD, IMD) , PLFUN (IMD, 1D}
c 3 ,QOND, 1D, 4)

*CQCECK PARMS
PARRMETTR ( PI=3.14159265358979323846)
PARAMETER (ICREAD=2, MREAD=5, IWRTTE=6, LVAX=7, LGLOBAI~8, ICRAY=9,

> LPLOT=10})
COMVIN/PARY/  RADDDo, ROONST, TIME, VISC, GAM, NVRX, IMBX,
> RVELP, TINC, TSTOP, NCOL, LCCL, CtR, TIMEo, CIRC, RADrD,
> 2ZCoR, RIMPMP, RIMPGQ, DIMP, RVELPP, RMM, DCENT, ICFLAG
OOMIN/PRINT/ LIC,iRIN,
> nrroce, 1100e,
> NCRAY, CRAY,
> NGLOBAL,
> NPIOT, {PLOT, 4PLOT, 32PLOT
*DECK NSRIN
CCCCOOCOOCO0CEOC START OF MAIN PROGRAM  CCOXXCOCOCCOCCCes

C
C This is a program to find the evolution of the coefficients in the

C Spectral Stokes equatiion.

c MAME ~ indicates a flag, Oar 1

c NAME ~ do NAME every n locos

C nr\AME - indicates the total Number of Records of NAME

c INAVE - indicates the current # of NAME

C ND - array dimension (> ar = NVRX+3)

C N - array dimension (> ar = NCOL)

C IMD - array dimension (> or = IMAX)

C IO - array dimsnsion (> ar = LQOL)

C COLILOC: XI{(NCD) - radial calleocation points

[of WIR(NCD) - weights for Gauss~Jaccbi quadrature

C CTH(I£D) - palar callocation paints

o WITH (ICD) -~ weights for Gauss-Legendre quadrature
c R(ND) - radlal coordinates coaresponding to XX (I)
C ACOBI: G(ND,NCD) - Jacchbl polynamials

C LEGENDRE:PO (INDIM, LOD) —~ Associated legendre poly. (m=0)

c Pl (DM, ICD) - Associated Legendre poly. (m=l)

C VATRIX: AMATRIX(NVD,NMD)} - A matrix

C BATRIX (NMD,NVD)} - B matrix

C RIAC (KD} - r2 dr/d(gsi)

C CCEFF: ALP(NWD,IMD) - coefficients in the expansion

C NMAX - numoer of temms with index n

C NCOL - number of callocation paints in the radial direction

C IMAX - murber of terms with Index 1

C LOOL — mumber of callocation points in the polar direction

C RADppo - initial radius of vortex ring in computational coordinates
C ROONST - constant which is cptimized far clustering around core

C PI - constant pi

C OUTPUT:
[
[+ name unit # description
C —_—
[of ICREAD 2 : initial conditien
c MREAD S : time marching parameters
c LWRITE 6 : debugging stuff
[+ LVAX 7 : final solution; sent to VAX
c IGIOBAL 8 : glcbal quantities at each time step; sent to Cray
[« ICRAY 9 : camplete solution at specified times; sent to Cray
[
Cc
*CALL PARMS
*CALL ARRAYS
C inputs and initialization:
CALL INITIAL
CALL JACOBI
CALL LEGENDRE

C form matrices:
DO 10 LIC=1,IMAX
CALL FORA
QLL FORB
CALL PREINT
10 OONIINUE

C integrate:
CALL TIMEINT
cail donenl

C output:
CALL CUTPUT

STCP
END

C 555558585588855555588 8588855855555 88885555555 SSS558SSSSSSSSSSSSSSSSs
SUBROUTINE INITIAL

*CALL PARMS
*CALL ARRAYS

C initialize flag far PLICONT — initializing file 15
YGIOBAL = O
4PIOT = O
42e10T = 0

C Read starting condition
o

READ (MREAD,1040)
READ (MREAD, *) ICFIAG
C time step, numcer of time steps:
READ (MREAD,1040)
READ (MREAD, * ) TINC, nrLOOP
C Every _ time steps, plot saln and write glaml info
READ (MREAD,1040)
READ (MREAD, 1040)
READ (MREAD, *) NPLOT, NGLCBAL, NCRAY

C Read data from IC.FOR
READ (ICREAD, 1040)
READ (ICREAD,*) TIME,ZCcR
(ICREAD, 1040)
(ICREAD, *} ROONSTT, RADOpo, TIVEO
(ICREAD, 1040)
(ICREAD, *) VISC, GAM, CtR
READ (ICREAD, 1040)
READ (ICREAD,*) IRUN, 1PLOT
READ (ICREAD, 1040}
READ (ICREAD,*) NMAX,NCOL,IMAX,ICGL
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READ (ICREAD,1040}
DO 5 LI=1,IMAX
READ (ICREAD,*) II,NVAXA(LI)
S CONTINUE

READ (ICREAD,1040C)
DO 10 I=l,NCOL
READ (ICREAD,*) II,XIDD(I},WIR(I)
10 CONTINUE

READ (ICREAD,1040)
DO 20 J=1,ICCL
READ (ICREAD,*) JJ,CTH(J),WITH(J)
20 CQNTINUE

READ (ICREAD, 1040}
DO 30 LI=1,IMAX
0O 40 NI=1,NVRXA(LI)
READ (ICREAD,*) LL,NN,ALP (NI,LI}
40 CONTINUE
30 CONTINUE

1040 FORAT (1X)
RCONST = RCONSID

C compute a few quatities, used throughout the program
c

C Find the corresponding radial values for the collocation points
DO 50 I=1,NOL
XI(I) = XIDO(I)
XI1 = XI(I}
R(I) = RCONST* (XI1/ (1.-XI1})**(1./2.)
50 CINTINCE

¢ carpute the coefficients in the multipale expansion for the Irpul se

CFACT = SQRT(2./PI)
cnve(l) = 4. * PI * ROONSTYROONST * CFACT
DO 110 NI = 2, X
RN = REAL(NI-1)
DM = {(2.*R¥+1.)*CFACT
CIMP (NI ) =DXM*4 . *PI*ROCNST*RCCNST
110 CONTINUE

RETURN
BD

CWW

SUBROUTINE JACCBI
Cthissubuoudmisdafinedfcrp-?el—l,q-e_L-l/Z

*CALL PARMS

*CALL ARRAYS

C G{NI, I} or GONVD,ND)
DOURLE PRECISICN N, EL, DUM, GNCRM, XID, R1, VTHL
REAL ARGL,ARG2, SNORM, GAMMA

Rl = RCONST

C tvaluate r*2 dr/d(xl):
Cc
Do 5 I=1,NCOL

c 2 * dixi)/ar

RIAC(I) = O.S*RI*RL*RL *XI (I)**(1./2.)/ (1.=XI(I)})**(5./2.)
c "2 * d(xi)/dr / wix)@l=l

FIAC(I) = O.S*RI*RL*RI*XI(I) / (L.-XX(D))**3
c (2 * dixi)/dr / wix)@L=1 )} * WLr—-quadrature

F222C (I} = 0.5 * RCONST**3 * WIR(I) *XI (1) /7 (L.=XI(I}}1*=3
3 CONTINUE

¢ valuate GR, GTH, GV:

DO 50 LI = 1,IMAX
EL = LI

C campute the Jacchi Polynamials for all n and xi at a given EL.
C this is only an intemmediate result, it is not needed cutside of
¢ this subroutine.
DO 10 I = 1,N0L
C n=0, NI =1
ARGl = 2*EL-1
ARG2 =~ (2*EL-1)/2.0
SNORM = SORT (2. ) *SQRT (GAMMA (ARGL) } /GAMVA (ARG2)
GNORM = SNORM
G(1,I) = 1.0d+0
[of n=1, NI =2
XID = XID(I)
G(2,1) = (4*EL*XID-2*EL+1}/DSORT (2*EL~1)
10 CONTINUE
C general recurrance formula - at that particular el.
C Note: if necessary, same memory can be saved by staring only
¢ —— 5Gn's at a given tire... Gn+2, Gitl, Gn, Gl, Gn—-2.

DO 20 NI = 3,NVAXA (LI)+2
DO 30 I~1,NOL

N = NI-2

XID = XIID(1)

G(NI,I) = (((4*N**2+(8*51;—4)%-4’&"2—4*&)”@—2*!0‘"3 (2=
1 4*EL) N-2*EL**2+3*EL-1) *G (NI-1,I)+ (-N*DSORT % 242 ¥ EL¥N-2*N) ~
2 ELADSORT (N**242*EL*N-2*N) ) *G (NI-2, I} }/ { W EL~1) *DKRT (N**2
3 +2*EL*MN+2*EI-1))

DO S6 I = 1,NCOL
XID = XICD (I}
ROFUNC (T) = RL* (1-XID)** { (~1.0d+0)/2.06+0~ (=E1~3)/2.0d+0) *
1 XID** (1.0d+0/2.0d+0~ (2-EL) /2.0a+0)
FUNC(I) = (1-XID)"((—E'u-S)/Z.Od-PO)*)CID"((Z-E‘.L‘;/Z.OdfO)
56 CONTINUE

€ campute the r cawonent of the vorticity basis function
DO 71 NI = 1,NMAXA (LI)
N = NI-1
DO 8l I =1,N0L
GR(NI,LI,I) = GNORM * G{(NI,I)*EL* (EL+1) *ROFUNC (T) /R1**2
81 CONTINCE
71  OONTINGE

Ccmputetheﬂaetaampmencofdmevordctcybasisﬁmctinn
DO 62 I = 1,NCOL
XID = X100 (I)
VTHL = XID** (EL/2 .00+ (~1.0d+0) /2. 0c+0) * (XID* ( (2*EL+1)*
1 (1-XID)** (EL/2.0d+0) *XID+ (~37EL~2) * (1-XID) ** (EL/2.0d+0) ) +
2 (EL+1)*(1-XID) ** (EL/2.0d+0) }/RL
GTH{(1,1I,I) = GNORM * VIHLl
62 CONTINUE

DO 72 NI = 2,NvRXA (LT)
N = NI-1
DO 82 I = 1,NOCL

VIH]l =

(((=2*N—4*EL+1) *Nt+ (1-2*EL) *EL+1) *DSCRT (N* 242 YELYN+2*EL~1) *
GNI+1, T)+ (N* (4*N+8*EL~4)+EL* (4*EL-3) 1) *G (L, I}+

(N* (2*N+4*EL-3) +EL* (2*EL~3) ) *DSQRT (N** 2+ (27EL~2) *N)*G(NI-1, I}
/ ((N* (4¥N+8*EL-4) +EL* (4*EL—4) ) *R1**2)

GTH(NI,LI,I) = GNORM * VIHL*RCFNC (I}
82 CONTINUE
72 CONTINUE

W e

C Knowing the Jaccbi palynamials, oToute (what arounts to) the
C vorticity basis functicn.
0o 60 I = 1,NCOL
XID = XIDD(I)
dim = XID* ((EL* {4 *EL+8) +3) "D+ (~4*EL-8) *EZ-3) /R1**2
GV(1,LI,I} = QNORM * cdm/FLNC(I)
m = XID* (XID* (EL* (EL* (L67EL+64) +60) *XID+EL*
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1 ((~24*EL-92) *EL-82) +3) +EL* (EL* (8*E1+28) +22) -3)
2/ (DSORT(2*EL~1)*R1**2)
GV(2,11,I) = QNORM * cim/FUNC(T)
60 CONTINUE

DO 70 NI = 3,NVRXA (LI)
N = NI-1

DO 80 I = 1,NCOL

DM =
1 ((N* (N* (N* (4*N+16*EL—4) +EL* (24*E1~12) =13) +EL* (EL* (16*EL~12)~26)+7)
+EL* (EL* (EL* (4*EL~4)~13)+7) +6) *DSORT (N**4+ (4*EL+2) *N**3+ (4*EL**
2+10*EL-1) *N**2+ (12*EL* *2+2*EL~2) *N+8*EL** 24 *EL) *G (NI +2, I} + (N
* (N* ((-8*N—-32*EL+12) *N+ (32~48*EL) *EL+20) +EL* ((28~32*EL) *EL+46)~
18)+EL* (EL* ( (8B—8*EL) *EL+26) —14) —12) *DSQRT (N**2+2*EL*N+2*EL~1) *
G(NI+1,I)+ (N* (N* (N* (N* ( (-8*N-4B*EL+24) *N+ (88-128*EL) *EL~2) +EL* (
{128-192*EL) *EL+56) —36) +EL* (EL* ((96~168*EL) *EL+186) —68) +4) +EL* (
EL* (EL* ( (40-80*EL) *E1+196) ~42) —64) +18) +EL* (EL* (EL* (EL* ( (8-16*EL
}*EL+68) =10} -64) +2) +12) *G (NI, I)+ (N* (N* (N* (8*N+32*EL~20) +EL* (4
8*EL~56) -8) +EL* (EL* (32*EL~52) ~18) +26) +EL* (EL* (EL* (8*EL~16)-10) +
20) +6) *DSCRT (N**2+ (2*EL~2) *N) *G (NI~1, I} + (N* (N* (N* (4*N+16*EL~12
Y+EL* (24 *E1~36) ~1) +EL* (EL* (16*EL~36) =2) +15) +EL* (EL* (EL* (4*EL-12
}=1)+15) ) *DSQRT (N**4+ (4*EL~6) *N** 3+ (4 VEL**2=14 *EL+11) *N**2+ (-4*
EL**2+10*EL~6) *N) *G (NI-2, I} } / { (N* (N* (N* (16*N+64%EL~32) +EL* (96*
EL~96) -16} +EL* (EL* (64*E1~96)-32)}+32} +EL* (EL* (EL* (16*EL~32}-16) +
32))*R1**2)

WV AN OO AWLMS WP

C Cooy the double precision variable, DM, to the single precision array
GV(NI,LT, I} = GNORM * DIM/FUNC (1)

80 CCNTINUE

70 CONTINUE

50 CONTINUE
RETURN
BD

C S5SEESSSEEs 58S 8E S8 S SSS S S ESSSSS S aSSSSS 3585558858585 SSS88SSSSS88SSSS
SCBROUTINE LEGENDRE

*CALL PARMS
*CALL ARRAYS

C Calulate legendre palynamials, PO(LI,J) amd P1(LI,J)
DO 10 J=1,100L
X1=CTH(J)
PO(1, J)=xX1
PO(2,J)=(3.*X1*x1-1.) /2.
SQ2=SORT (1. -X1*X1)
P1{(1,J)=—SX2
P1 (2, J) =3, *X1*SqX2
10 CONTINUE
DO 20 LI=3,IMAX
RI~REAL (LI-1)
FACI1=(2.*RL+1.}/ (RL+1.})
FAC2=RL/ (RL+1.)
FAC3=(2.*RI+1.)/RL
DO 30 J=1,LC0L
X1=CTH (J)
PO(LI, J} =FACL¥X2*PO (LI-1, 3} -FAC2*PO (LI-2, )
P1 (LI, J)=FAC3*X1*Pl (LI-1, J}~Pl (LI-2, J) /FAC2

€ S5555555555555555S555588 585555855 558555555555 55555555555 SSE55555SS5S
SCBROUTINE FORMA

*CALL PARMS
*CALL ARRAYS

QITEGER NI, LIC
DCUBLE PRECISION DSCRT, N, EL,R1

Rl = ROCNSID
EL = LIC

C Form AMAT (initial condition Matrix).

DO 20 NI = 1,NAXA(LIC)
AATMNI1) = 0.
AATMNI,2) = 0.

CONTINGE

MAT(L,3) = 0.
ART(1,4) = 0.
MAAT(1,5) = 0.

RRT(2,3) = 0.
ART(2,4) ~ 0.

AMRT(3,3) = 0.

AMAT(1,6) =
1(EL* (EL* ( (-16*EL~32) *EL~8) +8) +3) *R1/ (EL* (64*EL+64) )

AMPT(2,5) =
1DSORT (2*EL~1) * (EL* ( (~8*E1~20) *EL~14)-3) *R1/ (EL* (64 *E1+64) )

BMAT (3,4) =
1DSORT ({2*EL~1) /EL) * (EL* (EL* (8¥EL+20) +14) +3) *R1/ (EL
1 *(64*EL+192)+128)

ARAT(4,3) =
1 (2*EL+3) *DSORT ( (48*EL**4+48*EL**3-12*EL~3) /EL) *R1/ (EL
1 *(64*EX+192)+128)

AT (2,6) =
1(EL* (EL* (EL* ( (-1 6*EL~80) *EL~128) ~84) -31) -6} *R1/ (EL* (EL
1 *(64*EL+192)+128))

BMAT (3,5) =
1 (EL* (EL* ( (~16*EL~64) *EI~72) -16) +3) *R1/ (EL* (64 *EL** (3.0d+0
1 /2.0d+0)+192*DSQRT (EL} ) +128*DSQRT (EL) )

AAT (4,4) =
1DSORT ( (6*EL+3) /EL) * (EL* (EL* (EL* (8*EL+44) +82)+57) +9) *R1/
1 (EL* (EL* (64*EL+384)+704)+384)

AMAT(5,3) =
1(EL* (4*EL+16)+15) *DSQRT ( (12*EL**2+6*EL) / (EL+1) ) *RL/ (EL
1 *(32*EL+160)+192)

DO 10 NI = 3,NR0A(LIC)
N=N -1

AAT (NI, 6) =

1 ON* (N% (N* (N ( (~8*N-48*EL+24) "N+ (92-128*EL) *EL~14) + (144~192*EL) *£L*
1 *2-12)+EL* (EL* ((124-168*EL) *EI1+102)=19) +19) +EL* (EL* (EL* ( (64-80*
2 EL)*EL+144)-28)-7)-9)+EL* (EL* (EL* (EL* ( (16~16*EL) *EL+56)~32) ~37)
3 +7)46)*R1/ (N* (N* (N* (64*N+256*E1~128) +EL* (384*EL~384) ~64) +EL* (EL
4  *(256*EL~384)-128)+128)+EL* (EL* (EL* (64*EL-128)~64)+128})

MMAT (NI+1,5) =

1 ON* (N* ((~4*N-16*EL) *N+ (=36 *EL~24) *EL+1) +EL* ( (~40*EL~48) *EL+2) ) +EL*
1 (EL* ((-16*EL~24) *EL+12)+22)+6) *DSORT (N** 2+ 2 *EL*N+ 2*E1~1)
2 *RL/(N* (N* (128*N+384*EL) +384¥EL**2-128) +EL* (128*EL**2~128) )

MAT(NI+2,4) =
1 Q9* (N (N (8*N+32*EL+16)+EL* (48*EL+44) ~2) +EL* (EL* (32*EL+40)~8)-10} +

1 EL*(EL* (EL* (8*EL+12)-6)-11) -3}

1 *DSCRT(N**4+ (4*EL+2) *N**3+ (4*EL* *2

2 +10*EL~1) *N**2+ (12%ELA*2+2*EL~2) *N+8*EL**2~4*EL) *RL/ (N* (N* (N* (L
3 28*N+512*EL+256) +EL* (768*EL+768) ~128) +EL* (EL* (512*EL+768) ~256) -
4 256)+EL* (EL* (EL* (128*EL+256)~128) ~256) }

AT (NI+3,3) =

1 (N* (4¥N+B*EL+8) +EL* (4*EL+8) +3)
1 *DSCRT Gi**6+ (64EL+6) *N** 5+ (12*EL**2+3

1 6*EL#L0)*N**4+ (B*EL** 3+ T2¥EL**2+64 *EL) #Nv*3+ (4BYEL#* 3+132#EL"*2
2 +247EL-11) *N**2+ (BE*ELA*3+T2VELY *2-22*E1-6) *N+4G*EL* *3-127EL) *R
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3 1/ (N* (N* (12B8*N+384 *EL+384) +EL* (384 ¥E1+768) +256 ) +EL* (EL* (128*EL+
4 384)+256))

CONTINUE

DO 25 NI = 1, NVAXA (LIC)
AMMTE (NI, 1,LIC} = AMAT (NI, 6)

DO 30 NI = 1, NMAXA(LIC) -1
AMATE (NI, 2,LIC) = AMAT (NI+1,5)

DO 40 NI = 1, NMRXA(LIC) - 2
AMATE (NI, 3,LIC) = AMAT (NI+2,4)

DO SO NI = 1, NAXA(LIC) - 3
AMATE (NI, 4,LIC) = AMAT (NI+3,3)

RETURN
END

C SSES S5 S a5 588 5SS S S S8 S S e SE S S5 SESS 5SS 85SS SSSESSS5SSSSSSSSSES5558SS

SUBRCUTINE FCERMB

*CALL PARMS
*CALTL, ARRAYS

INTEGER NI, LIC
DCQUBLE PRECISION DSCRT, N, EL, RL

EL = LIC
Rl = RCONSID

bmat (1,1) =
1 (EL* (EL* (EL* (EL* (EL* (EL* (128*F1+832)+1952} +1936) +536) ~356} —258) -
1 45}/ (EL* (EL* (512*E1+1536)+1024) *R1)

kmat (1,2) =
1 (EL* (EL* (EL* ( (~32*EL~208) *E1~496)~536) ~258) ~45) *DSQRT (8*EL**3
1 -12%=I*w2+6%EL~1)/ (EL* (EL* (S12*EL+1536) +1C24) *Rl)

bmat (1,3) =
1DSORT ( (2*EL~1}/EL) * (EL* (EL* (EL* (EL* ((~64*EL~576) *EL-2032)-3552) -
1 3196)-1380}-225)/ { (EL* (EL* (256*EL+1536)+2816)+1536) *R1)

kmat(l,4) =
1 (EL* (EL* (EL* (16*EL+112)+288)+324)+135) *DSQRT ( (48*EL* *4+48*EL**3-
1 12*EL-3)/EL}/ ((EL* (EL* (256*EI+1536) +2816)+1536) *R1})

brat (1,5) =
1 (EL* (EL* (EL* (16*EL+160) +552)+792} +405) *DSCRT ( (6*EL**4+36¥EL,**3—
1 24*E1~6)/ (EL**2+EL})/ ( (EL* (EL* (S12*EL+4608)+13312)+12288) *R1)

bmat (1,6) =
1((~4*EL~24) *EL~35) *DSCORT ( (3840*EL**7+21120*EL** 6+4 3200*EL** 5+
1 37920*EL**4+8400*EL**3—~7560*EL* *2-~4860*EL~810) / (EL**2+EL) )
2 /((EL* (EL* (512*EL+4608)+13312)+12288) *R1}

tmac(2,1) =
1 (EL* (EL* (EL* (EL* (EL* (EL* (EL* (128*EL+1472) +6624) +14768)+16744) +
1 8468)+1002)+9)+135}/ (EL* (EL* (EL* (S12*E1+3072) +5632) +3072) *R1})

bmat (2,2) =
1 (EL* (EL* (EL* (EL* (EL* ( (-64*E1~576) *EL~1936)~3056)-2476)-1372) -
1 795)-225)/ ((EL* (EL* (256*EL** (3.0cd+0/2.0d+0) +1536*DSQRT (EL} ) +
2 2816*DSQRT(EL})+1536*DSCRT (EL)) *R1)

brac(2,3) =
IDSCRT ( {6*EL+3) /EL) * (EL* (EL* (EL* (EL* (EL* ( (-64*EL-~896) *EL-50C8) -
1 14208)-21420)-1596C)-4059) +540) / { (EL* (EL* (EL* (256*EL+2560)
2 +8960)+12800) +6144) *R1)

brat(2,4) =
1 (EL* (EL¥ (EL* (EL* (EL* (128*£1+1440)+6288) +13424) +14208) +6282)
1 +40S) *DSQRT ((12*EL+6) / (EL**2+EL) ) / ( (EL* (EL* (51 2*EL+4608)
2 +13312)+12288)*R1)

bmac(2,S) =
1 (EL* (EL* (EL* (EL* (16*EL+224) +1120) +2372) +1735)-175) *DSQRT (

1
2

(480*EL**4+2400*EL** 344 320*EL**2+3240*EL+810) / (EL**2+EL) )
/ ({EL* (EL* (EL* (512*EL+7168)+36352) +78848) +61440) *R1)

bmat (2,6) =
1 (EL* ((-24*EL~252) *EL~858)~945) *DSORT ( (1 60*EL* * 5+800*EL**4+

1
2

1440*EL**3+1080*EL**2+270%EL) / (EL**2+3*EL+2) ) / ( (EL* (EL
* (256*EL+3072) +12032) +15360) *R1)

bmat (3,1) =
1 (EL* (EL* (EL* (EL* (EL* (EL* (EL* (128*EL+2240) +16352) +64752) +151464)

1
2

+213988)+178730) +80661) +14715) / ( (EL* (EL* (EL* (512*EL+5120)
+17920) +25600) +12288) *R1 )

bmat (3,2) -
1DSQRT (6*EL+3) * (EL* (EL* (EL* (EL* (EL* ( (~64*E1~832) *EL~4368)-12272)

1
2

~20972)-23468)-16499)-5385) / ({EL* (EL* (EL* (S12*EL+5120) +17920)
+25600)+12288) *R1)

bmat (3,3) =
1DSCRT ( (12*EL+6) / (EL+1) ) * (EL* (EL* (EL* (EL* (EL* ( (~64*E1~1280) *EL

1
2

~10544) ~46192)~115804)~165336) —=123605) -36975) / ( (EL* (EL* (EL*
(256%EL+3584)+18176)+39424)+30720) *R1)

bmat (3,4) =
1(EL* (EL* (EL* (EL* (16*EL+232)+1300) +3538) +4714) +2485) *DSCRT ( (480

1
2

*EL**4+2400*EL** 3+4320*EL**2+3240*EL+810) / (EL+1) )} / ((EL* (EL*
(EL* (256*E1+3584) +18176)+39424)+30720) *R1)

mac (3,5) = .
1 (EL* (EL* (EL* (EL* (EL* (96*EL+2064) +17568) +75384) +169950) +186081) +

1
2

T2765) *DSQRT ( (40*EL**2+8C*EL+30) / (EL**2+3*EL+2) } / { (EL* (EL
* (EL* (512*E1+9216) +60928)+175104) +184320) *R1)

bmat (3,6} =
1 (EL* ((~24*E1~324) *EL~1434)-2079) *DSCRT ( (2240 EL**6+23520*EL* * 5+

1
2

98560* EL**4+208880*EL**3+23310C*EL**2+1277SC*EL+26250} / (E1+2) )
/ ({EL* (EL* (EL* (512*EL+9216)+6C928) +1751C4) +184320) *81)

DO 10 NI = 4,NVRXA (LIC)

N=N -1

bmat (NI, 1) =
1 ON* (N0F Q% (N* (N (N (Y (N (N* (96*N+ 960 EL—480) +EL* (4384 *EL~3632) +672

VEAS QOIS WN -

)+EL* (EL* (12032*E1~12032) +2624) +192) +EL* (EL* (EL* (22048*EL~22432
)432) +136) —4026) +EL* (EL* (EL* (EL* (28352*EL~25120} ~18528) -3760) -1
0900) +9390) +EL* (EL* (EL* (EL* (EL* (26080*EL~16432)-48640)~16104) +1
926)+38413)~2097) +EL* (EL* (EL* (EL* (EL* (EL* (17024*EL~5120) -62944)
—29696) +42232) +68288) -16618) -10272) +EL* (EL* (EL* (EL* (EL* (EL* (EL*
(7S52*EL+256)-46464)-28432) +65608) +69752) ~32292) —21489) +5085) +E
L* (EL* (EL* (EL* (EL* (EL* (EL* (EL* (2048*EL+640) -18816) -13920) +42976
}+41656)-27816)-21458) +7626) +1440} +EL* (EL* (EL* (EL* (EL* (EL* (EL* (
EL* (EL* (256*EL+128) ~3264) ~2784)+10800)+12024) -7684)-11258) -864}
+2106)+540) / ((N* (9* (N (N* (N* (1024*N+6144*EL~3072) +EL* (15360*E1~
15360)-5120) +EL* (EL* (20480*EL~30720) ~20480) +15360) +EL* (EL* (EL* (
15360*E1~30720)~30720) +46C80) +4096) +EL* (EL* (EL* (EL* (6144 *EX~153
60)—20480) +46080) +8192) ~12288) +EL* (EL* (EL* (EL* (EL* (1024*EL~3072
)-5120) +15360) +4096) ~12288) } *]1)

bmat (NI, 2) =
1 QN (N* (N (N* (N* (N* ( (-16*N~128*EL) *N+ (—48C*EL~128) *EL~40) +EL* ((~1C8

@~ n e W

B*EL~768) *EL~240) ) +EL* (EL* ( {-1680%EL~2176) *EL~472) +736)+431)+EL
* (EL* (EL* ( (~1856*EL~3584) *EL~288) +2944) +1724) ) +EL* (EL* (EL* (EL* (
(~1408*E1~3456) *EL+560) +5696) +2800) ~1016) ~105) +EL* (EL* (EL* (EL* (
EL* ((—640%E1~1792) *EL+1056) +5504) +2152) ~2032) ~210} ) +EL* (EL* (EL®
(EL* (EL* (EL* ((-128*EL~384) *E1+480) +2016)+360) -2088) -838) +402) +1
80) *DSQRT (N** 2+ 2*EL*N+ 2*ET~1) / { (N* (N* (N* (N* (1024*N+5120*EL) +
10240*EL**2-5120) +EL* (10240*EL**2-~15360) } +EL* *2* (5120*EL**2~
15360) +4C96) +EL* (EL**2* (1024*EL**2-5120) +4096) } *R1)

tmac (NI, 3) =
1N* (N (N* (N® (N (N ((=32*N-236*51~128) "N+ (-928*T~1040) *EL—64 } +EL* (

1
2
3
4
5
6
6

(~1984*E1~3648) *EL-816) +256) +EL* (EL* ( (-272C*EL~7136) *EL-3024) +1
976)+1022) +EL* (EL* (EL* ( (~2432*51—8384) *EL-5248) +5696) +6200) +146
8) +EL* (EL* (EL* (EL* ( (~1376*EL-5304) *E1~4800) +7880) +12626) +4047} ~
971) +EL* (EL* (EL* (EL* (EL* ( (~448"E1~2304) *E1~2256) +5296) +1C844) +3
656)-3427) =1641) +EL* (EL* (EL* (EL* (EL* (EL~ { (~64*EL~384) *EL-432) +1
392) +3396) +1104)-2477)-2085) ~450)

*DSQRT (N** 4+ (4*EL#+2) *N**3+ (4*EL
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##2410%EL~1) #N*#2+ (L2*EL**2+2%EL~2) *N+ 8*EL**2-4*EL) / ( (N* (N* (N* (
N* (9* (S512*N+3072*EL+1 536) +EL* (7680*EL+7680) —2560) +EL* (EL* (10240
*E1+15360) ~10240) ~7680) +EL* (EL* (EL* (7680*EL+15360)~15360)-23040
)+2048) +EL* (EL* (EL* (EL* (3072*EL+7680)-10240) -23040) +4096} +6144)
+EL* (EL* (EL* (EL* (EL* (512*E1+1536)~2560) ~=7680)+2048) +6144} } *R1)

*

PO ]

10 CONTINUE
DO 20 NI = 4,NvRXA (LIC)
N = NI-1

kmat (NI, 4) =
1 ON* Q% (N* (N* (N* (48*N+28B*EL+268) +EL* (S00*EL+1664)+744) +EL* (EL* (128
O*EL+4096) +3§72) +1056) +EL* (EL* (EL* (1200*EL+5184) +7304) +3440) +51
Y4+EL* (EL* (EL* (EL* (608*EL+3296) +5968) +3376)~1146) ~1242) +EL* (EL* (
EL* (EL* (EL* (128*EL+832) +1792) +992)-1368) --1836) -540)
*DSORE (N** 6+ (
GAEL+6) *N** 5+ (12EL* #2+36*EL+10) *N**4+ (B¥EL**3+72*EL**2+64*EL} *
N**3+ (48*EL**3+132%EL*#* 2+ 24 *EL~11) *N**2+ (88*EL**3+712*EL**2-22*E
16} *N+AB*ELV*3=12*EL} / { (N* (N* (N* (N* (2048*N+10240*EL+10240) +EL*
(204 80*EL+40960) +10240) +EL* (EL* (20480*EL+61440) +30720) -10240) +E
L* (EL* (EL* (10240*EL+40960) +30720) ~20480) ~12288) +EL* (EL* (EL* (EL*
(2048*EL+10240)+10240)-10240)-12288) ) *R1) .

WO~ WU S N

bmat 0T, 5) =
1 (% (N* (N (N (N* (32*N+192*%EL+288) +EL* (480*EL+1456)+832) +EL* (EL* (640
*ET+2944) +3424) +672) +EL* (EL* (EL* (480*EX+2976) +5280)+2216)-702) +
EL* (EL* (EL* (EL* {L92*EL+1504) +3616) +2416)—1236)~1242) +EL* (EL* (EL
* (EL* (EL* (32*EL+304) +928) +872)~534)-1197)—405}
*DSORT (N**8+ (8*EL+ .
12) *N** 74 (24 *EL* *2+92%EL+ 54) *N**6+ (32¥EL** 3+ 264 *EL**2+396*EL+10
8) *N** 54 (16¥EL**4+336*EL**3+1076*EL** 2+ TT6*EL+63) *N**4+ {160*ELx>
*4+1 280%EL**3+2000*EL**2+612*EL~72) *N** 3+ (S60*EL**4+21 60*EL** 3+
1636*EL**2-52*E1~124) ¥N**2+ (BOC*EL** 441 S68*EL** 3+ 3T6*EL* *2-296*
EL~48) ¥N4+384*EL* * 4+ 384 *EL** 3~96*EL**2~96*EL) / ( (N* (N* (N* (N* (N* (2
048*N+12288*EL+18432) +EL* (30720*EL+92160)+51200) +EL* (EL* (40960*
EL+184320) +204800) +30720) +EL* (EL* (EL* (30720*EL+184320) +307200) +
92160)~53248) +EL* (EL* (EL* (EL* (12288*EL+92160) +204800C) +92160) -10
6496)—49152) +EL* (EL* (EL* (EL* (EL* (2048*EL+18432) +51200) +30720) -5
3248)-49152} } *R1)

A S

tmac (NI, 6) =
1 (N* V* ( (-16*N-64*EL~128) *Nt (~96*EL-384) *EL~344) +EL* ( (-64*EL~384) *E
1-688) =352 )+EL* (EL* { (-1 6*EL~128) *EL-344) ~352)-105}
*DSORT (N* ¥ 10+ (
10%EL+20) *N**O+ (40*EL* * 2+ 190*EL+165) *N**8+ (B0*EL** 3+ 720*EL**2+1
480*EL+720) *N** T4+ (BOFEL**4+1 360~ EL** 3+5260*EL** 2+6080*EL+1743) *
N**6+ (32*EL** 5+1280*EL** 4+ 9240 EL** 3+ 20080 *EL**2+13978*EL+2100)
AN 54 (4SOXEL** 5+B000*EL* * 4+32200*EL** 34427 60*EL**2+17030*EL+33
S) *N** 4+ (2T20*ELY * 5+ 24800*EL* *4+61320*EL** 3+49480*EL* *2+7S00*EL
~2120) *N** 3+ (T200*EL**5+39920*EL**4+ 62440*EL* *3+26 34 0¥ EL**2-458
O*EL~2244) *N¥*2+ (§768*EL**5+31 520*EL**4+301 60*EL** 3+1720*EL* *2~
SE88*EL~T720) *N+3840*EL**S+3600* EL* *4+4800*EL**3-2400*EL**2-1440
*ELY / ( (N* (% (N* (N* (2048*N+10240*EL+20480) +EL* (20480*EL+81920) +7
1680)+EL* (EL* (20480*EL+122880) +215040) +102400) +EL* (EL* (EL* (1024
O*EL+81920)+215040) +204800) +49152) +EL* (EL* (EL* (EL* (2048*EL+2048
0)+71680) +102400) +49152) ) *R1)

AN 0 DD N

20 CONTINUE

RETURN
23 9)

€ SSS5555555555555555S85S5SSS5S55555555 55585585 5SSSSSSSSSSSS8SSSSS55SS

SUBROUTINE PREINT

*CALL PARMS

*CALL ARRAYS
C apely time differencing: Crank-Nicholson for viscous tem
C

DO 5N = 1,5
DO 6 K = 1,6-NI
6 BTEMP (NI, K) = 0.0
5 CONTLNUE

DO 17 NI = 1, NVAXA(LIC)

17

12

13

14

15

16

10
20

BTEMP (NI, 6) = BVMAT(NI,1)

DO 12 NI = 2, NYPXA (LIC)
BIEMP (NI, 5) =~ BMAT(NI-1,2)

DO 13 NI = 3, NVRXA (LIC)
BIEMP (NI, 4) = BMAT(NI-2,3)

DO 14 NI = 4, NVAXA (LIC)
BTEMP (NI, 3) = BVAT(NI-3,4)

DO 15 NI = 5, NVAXA (LIC)
BTEMP (NI, 2) =~ BMAT (NI—4, 5)

DO 16 NI = 6, NVPXA (LIC)
BIEMP (NI,1) = BMAT(NI-5,6)

DO 20K = 1,6

DC 10 NI = 1, NVAXA (LIC)
AMAT (NI, K} = —{(2.*MMAT (NI, K) — BTEMP (NI, K)*VISC*TINC)
BATS (NI, K, LIC) = —2.*BVAT (NI, K) *VISC*TINC

CONTINUE

CONTINGE

C decampose matrix AMAT

[of

N = NMAXA (LIC)

NC =5

IA = ND

IU = ND

CALL IUDAPB (AMAT,N,NC,IA,AINV, IU,D1,D2, TER)

IF (IER.NE.Q) THEN
WRITE (LWRITE, 280} IER,LIC
BD IF

280 FORMAT (' WARNING: the error parameter is ',I3,' for LIC =',I3)

41
it

C SS5S555555555555555555555 555555555585 5555 S5 S8 SSSS55SSSSS8a5555888558

DoO31K=1,6
DO 41 NI = 1,NMAXA (LIC)
AVMBTS (NI, K, LIC) = AINV(NI, X}
CONTINUE
CCNITINUE

RETURN

END

SUBROUTINE TIMEINT

*CALL PARMS
*CALL ARRAYS

C Write header lines to files:

C

o

WRITE (LGLORAL, 2010}

C 2010 FORMAT (X, ‘head: FrameSaved time centraid ringV

C

1 impulseMP Impulse® dIgr*)

C Begin integration ...
o

NSCONT = 1
DO 10 i100P = 1,nrloce

farm forcing function (convection term) for all values of L.

CALL FORCING

OQutput solution to cray at every xx time steps

IF (ILCOP.EQ.1) THEN
ntCRAY = (nrlooP -1) /NCRAY +1
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WRITE (LCRAY) ntCRAY N = NYAXA(LIC)
WRITE (LCRAY) RCONSID, RADEpo, TIMEO =5
WRITE (LCRAY) VISC, GAM, CtR 1A = ND
WRITE (LCRAY) {RIN, LPLOT
WRITE (LCRAY) NMAX,NCOL, IMAX, LCOL Do 31 K=1,6
WRTTE (ICRAY) (NAXA (LI}, LI=1,MAX) DO 41 NI = 1,NVAXA(LIC)
WRTTE (LCRAY) (R(I), I=1,NCOL) 41 AINV(NI,K) = AMATS (NI, K, LIC)
WRITE (LCRAY) OKIDD (1), WER(I), I=1,NCOL) a CONTINGE
WRITE (LCRAY) (CTH(J),WITH(J), J=1,1CQL}
END IF CALL LUELPB (AINV, RS, N, NC, TA, DELSOLN)

DML = ({4100P-1) /NCRAY) *100000 :
the unknown, time dependent coefficients' are:

IDIM2 = ({iLOGP-1)*100000) /NCRAY [+
IF (IDMI-TDOM2.EQ.0) THEN c
CALL QUTPUT2
ICRAY = NSCOUNT DO 70 NIP = 1,NvAXA (LIC)
NSOOUNT = NSCOUNT+1 ALP (NIP,LIC) = DELSCIN (NIP) + ALP (NIP,LIC)
ELSE 70 CONTINUE
4CRAY = 0
END IF 20 CONTINUE
c Plot salution every xx time steps
[ . ’ [ save the convective tem fram the previcus time step.
DML = (({4100P-1)/NPLOT) *100000 [
IDUM2 = ((L100P~1)*100000) /NPLOT
IF (IDUML-IDUMZ2.EQ.O) THEN DO 90 LIC =~ 1,IMAX
CALL STREAMF DO 100 NIP =~ 1,NMAXA (LIC)
CALL PLICONT (NCD, I€D, Q¥EG, CTH, R, XY, SFUNC, F} 100 CONVML (NIP,LIC) = CONV(NIP, LIC)
{PIOT = {PLOT + 1 90 CONTINUE
IF (JPICT.BQ.0) THEN
nrPIOT = (nricoe-1)/NPLOT+l et c Advance "time”
WRITE (IPIOT) iRON,GAM, TIME,CtR c ———
WRITE (LPLOT) TINC, NAX, IMAX TIME = EXP (ALOG(TIME) + TINC)
WRITE (IPIOT) nrPlOoT
END IF 10 CONITINCE
ENERGY = O.
DISSIP = Q. C end integration.
WRITE (IP1OT) TRME, CIRC, RADpD, RVELD ¢ ——
WRITE (LPLOT) ENERGY , DISSIP, RIMAVP, RIMPGR, DIMP
4PLOT = 1 5  CONTINUE
BD IF
. RETURN
IF (1I0OP.EQ.nriOCP)GOTO 5 ! Quit integraticn after nrlOCP steps END

C SSSSESESESSSESSESSSSEESSSSSSESSSSSSEsSSaSESSSaSEEsSeSSESSSSSSSEssS

C Campute centraid: .
o4 SUBROUTINE MATMULT
2CoR = 2COR + RVELP* (EXP (TINC + ALOG(TIME)) -TIME)/ *CALL PARMS
1 (SORT (TIMEO) *RADPRO) *(CALL ARRAYS
C Advance the unknown coefficients in time for each L
[o4 C initialize the solution vector to zero
o

DO 20 LIC = 1,IMAX
DO 15 NI = 1,NvMAXA (LIC)
c Multiply B matrix times the solution vector 15 BVEC (NI) = O.

CALL MATMULT
¢ multiply all elements above/on the diagonal
C

[of Adams Bashfarth differencing applied to the convective term.

c DOI0OK=1,6
DO 20 NI = 1,NMAXA(LIC) ~ 5
IF (1LoCP.EQ.1) THEN 20 BVEC (NI) = BVEC(NI) + BVATS(NI,K,LIC) * ALP (NI-1+K,LIC)
DO 30 NIP = 1,NVRXA (LIC) 10 CONTINGE
30 RHS (NIP) = —2,*CONV (NIP,LIC)*TINC + BVEC(NIP)
ELSE C multiply all elements below the diagonal
DO 40 NIP = 1,NVRXA (LIC) Cc
FRHS (NIP) = —(3.*CQWV (NIP, LIC)-COWML (NIP, LIC} ) *TINC
1 + BVEC (NIP) DO 30K =1,5
45 CONTINUE DO 40 NI = 2,NMRXA(LIC) - 4
40 BVEC (NI+K—1) =BVEC (NI+K~1) +3ATS (NI-1, K+1, LIC) *ALP (NI-1, LIT)
END IF 30 CONTINUE
C invert the implicit term with forcing function (RHS(NIP)) as rhs C multiply the lower right hand cormer elements (5x5 matrix)

c C
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DO 50 NI = NVAXA (LIC), NMAXA(LIC) - 4, -1
IF (NI.LT.1) GOTO 100 *(ALL PARMS
*CALL ARRAYS
C  above/on the diagonal
c C Go FRM wave space TO real space
DO 60 K = 1,NVAXA (LIC)-NI+1 c
60 BVEC(NI) = BVEC(NI) + BMATS (NI, K,LIC) * ALP (NI-1+K,LIC)
C  below diagonal 0O 10 I=1,NCOL
c DO 20 J=1,L00L
DO 70 K = 1, NAXA (LIC}-NI VELRA(J) = 0.
70 BVEC(NI+K) = BVEC (NI+K) + BMATS(NI,K+1,LIC) *ALP (NI,LIC) VELTA(J) = 0.
VORTA(J) = 0.
50 CONTINUE 20 CONTTMLE,
100  CONTINUE DO 30 LI=1,IMAX
VEIR = 0.
VEIT = 0.
RETURN VORT = 0.
239)
DO 40 NI=1,NMAXA (LI)
€ 55555 S S S SSS S SE SSSS S S 5SS S5 S5 SS S SSS S S S55S5555555SSSS5SS VELR = VELR + GR(NI, LI, I} *ALP (NI, 1)
VELT = VELT + GTH (NI,LI,I)*ALP NI, LI}
SUBRCUTINE MATMULTZ (LI, NVD, IMD, NSB, ALP, NMAXA, RAAT, SOLNV) VORT = VORT + GV (NI, LI, I)*ALP (NI,LI)
40 CONTINUE
*CALL PARMS
DO 50 J = 1,1C0L
DIMENSION RVAT (WD, NSB+1,IMD), ALP(ND,IMD), NVRXA (IMD) VELRA(J) = VELRA(J) + VELR*PO(LI,J)
DIMENSION SOINV (NYD} VELTA(J) = VELTA(J) + VELT*P1(LI,J)
VORTA(J) = VORTA(J) + VORT*PL (LI, J)
C initialize the soluticn vectar to zero 30 CONTINUE
c 30 CONTTME
DO 15 NI = 1,NVBXA (LI) DO &0 J=1,100L
15 SOLW (NI) = O. UR(I,J) = VEIRA(J)
UTH(I,J) = VELTA(J)
QVEG (I,J) = VORTA (J)
C multiply all elements above/cn the diagonal 60 CNTINUE
c 10 CONTIME
DO 10 K = 1,NSB+1 c Carpute Saffman's velocity
DO 20 NI = 1,NVAXA (LT) — NSB DO 120 J=1,ICCL
20 SOINV (NI} =~ SOINV(NI) + RAT(NI,X,LI) * ALP (NI-1+K,LI) STH(J) = SORT(1.-CTH(J) **2)
10 CONTINUE 120 CONIINLE
C multiply all elements below the diagonal
c IF (ILOCP.EQ.1) THEN
DO 30 K = 1,NSB c For the first time step cnly, camute the RMS error of vorticity
DO 40 NI = 2,NVAXA (LI) - (NSB-1) c
40 SOLNV (NI+K—1)=SOINV (NI +K-1) +RMAT (NI-1, K+1,LI) *ALP (NI-1, LI)
30 CONTIWE c the initial condition 1s a Stokes solution

C multiply the lower right hand comer elements (NSBXNSB matrix)
Cc

DO 50 NI = NVAXA(LI), NMAXA(LI) - (NSB-1), -1
IF (NI.LT.1l) GOTO 100

C above/on the diagonal
C

DO 60 K = 1,NBXA(LI)-NI+1
60 SOLNV (NI} = SOLNV(NI} + RAT(NI,K, LI) * ALP (NI-1+K,L1I}

C  below dlagonal
¢ DO 70 K = 1,NVAXA (LI} NI

70 SOLAV (NI+K} = SCIAV (NT+K) + RVAT (NI, X+1,1I) *ALP NI, LI
50 CNTINUE

100 CaTINME

RETCRN
3319

C S535855S5S5SS555SES8555858SSSs SESSESS588S SSE5S5S SSSSE S5S5

SUBROUTINE FORCING

IF (ICFIAG.EQ.1) THEN
RED = Q,
marm = Q.
DO 132 I = 1,NCOL
RA4D1 =~ 0.
rmormt = 0.
Weth = 1,
DO 142 J = 1,10CL
EXQMEG = STH{J)*R(I)*EXP{~R(I}**2/4.}/ (TIME*16.*PI**(3./2.}))
RMSDL = RMD1 + (EXQYEG-QVEG (I, .J) }**2*WTTH (J} / (WEth*STH (3} )
maml = moml + EXQVEG**2*WITH (J) / (Weth*STH (0} )
142 CONTINUE
RED = RMSD + RMSDL*F2JAC(I) /R(I)
mom = mom + rnorml *F2JAC(I) /R (I)
132 CONTINE
RMSD = SORT (RVSD)
WRITE (LWRITE, 1100) NVAXA (1), RYSD
WRITE (LARITE, 1101) rmom
END IF

C the initfal condition is a thin ring

IF (ICFIAG.EQ.2) THEN

FOED = 1.2564392281

CAPR = RADpRO

RMD =~ Q.

rorm = 0.

oo 131 I = 1,NCCL
RAD1 = O.
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mamlt = 0.
weth = 1.
DO 141 J = 1,ICOL
ARG = EXP( -(FDXED/CR**2)* ( 1.+ (R(I)*R(I)/ (CAPR*CAFR) )
1 - 2.*R(I})*STH(J)}/CAPR ) )
ARG2 = EXP( —{FIXED/CtR**2)* ( 1.+ (R(I)*R(I}/ (CAPR*CAPR} )
1 + 2, *R(I)*STH{(J)/CAPR ) }
EXCMEG = FIXED *GMM * (ARG-ARG2)/ (PI* VISC *CAPR**2 *CtR**2)
REDL = RMSDL + (EXOMEG-QMEG (I, J) )} **2*WITH (J) / (WFth*STH(J})
rnomml = rnoml + EXCOMEG**2*WITH (J) / (WEth*STH ()}
141 CONTINUE
RMSD = RVSD + RMSDL*F2JAC (I) /R(I)
rmom = rmarm + rrormi*F2J8C (I)/R(I)
131 CONTINUE
RMSD = SQRT (RMSD)
WRITE (LWRITE, 1100)NVRXA (1) , RMSD
WRITE (IWRITE, 1101) rnomm
BED IF

11C0 FORAT (X, 'NVRXA (1) = *,I2,5x, 'RMserror =, £18.9)
1101 format {x, ‘rmom = ‘', £19.8}
END IF

(o]

Carpute speed of Saffran centroid and other stuff

RV = 0.
Pl = 0.
Ccp2 = 0.
TPl = 0.
P2 = 0.
CIRC = 0.
RADEp = O.
MM = 0.
DCENT = 0.
DO 130 I = 1,NCOL
[o an inner locp begins here for the double integration
RIMPL = 0.
CENTL = Q.
CENT2= 0.
TPl = O.
™2 = 0.
CIRC1 = 0.
RADpol = 0.
RML = Q.
DCENTL = 0.
Wrth = 1.
DO 140 J = 1,1CCL
URl = UR(L,J)
Ul = UTH(I,J)
RIMP1 = ROMPL + QMEG (I, J)*STH(J) *WITH (J) /WFth
CENT1 = CENT1 + URL*QVEG (I, J) *STH (J) *CTH (J) *WTTH (J) /WFth
CENT2 = CENT2 + UTHL*QMEG(I, J)* (3.*CTH(J) *CTH (N -1.)
1 *WITH (J) /WELh
TIMP1 = TIMP1 + URL*QMEG (I, J)*STH (J) *WITH (J) /WFth
TIMP? = TIMP2 + UTHI*QVEG(I, J) *CTH(J) *WITH (J) /WFth
CIRCL = CIRC1 + Q¥EG (I, J) *WITH(J) / (WFth*STH(J))
RADrpl = RADpDL + QEG (I, J) *WLTH (J) /WFth
RAML ~ RIML + (URL*CTH (J)-UTHL *STH (J) ) *WITH(J) /WFth
DCENTL = DCENT1 + QUEG(I,J) *STH (J) *CTH (J) *WITH (J) /WFth
140 CONTINUE

[of weight function of quadrature method
WFrad = SQRT((1.— XI(I))/XX(1})
€ Nete that F2JAC(I) = RIAC(I)*WIR(I)/WFrad
RIMP = RDWP + RIMPL*R(I}*F23AC(I)
CP1 = CP1 + CENT1*R(I)*F2JAC(I)
CP2 = (P2 + CENT2*R(I})*F232C (I}
TP1 = TPl + TIMPL*RJAC(I)*WIR(I)/MWFrad
TP2 = TP2 + TIMP2*RIAC(I) *WIR(I) MWFrad
CIRC = CIRC + CIRC1*F2JAC(I)/R(I)
cl2/10/87 RACT = RADDo + RADPOL*R(I)*F2JAC (1)
RADpo = RADpp + RADCOL*F2AC(I)
R = RMM + RAMLTF22C(T)
DCENT = DCENT + DCENTL*R(I)**2*F23AC(I)
130 CONTINGE
¢ coapute inpulse by multipole expansion
S SM = 0.
DO 21 NI = 1,NvAX
SM = SM + ALP (NI, 1)*CIMP (NT)

21 CONTINGE

IF (TDME.EQ.O.) THEN
TIME= 1./ (RDMP *PI)
TIMEo = TIME

C BE CAREFUL HERE, THIS STATEMENT WAS CHANGED QUICKLY WITHOUT
€ MUCH THOUGHT FROM TI00P.EQ.1 TO INCLUDE IF TIME.EQ.O.
[of IF (1100P.EQ.1.AND.TDME.EQ.0.) TIMEo = TIME

ROMVWP = SM'TIME
RIMPGQ =~ RIMP*PI*TIME
RVEIPP = time*pi* (3.*CP1l + CP2}
DIMP = 2.* PI* (TPl + TP2)
IF (ICFIAG.EQ.2) THEN
SAFVEL = gam* {ALOG (4. %2.24182/CtR} — 0.558}/ (4. *pi*RADDRO}
ELSE
SAFVEL = 0.0
END TF

C COMPUTE THE CFL MUMBER AT THE ORIGIN
IF (I11L0CP.EQ.1) THEN
CFL = TINC* (UTH (1, 1COL/2)+RVELPP) / (R(2)-R(1}))
¢ 1300 FORAT(* THE CFL NUMBER IS',F16.8)
WRITE (6,*) ‘I, (Flrad, CFltheta'
DO 1310 I=1,NCCL~1
CFLrad = TINC* (UTH (I, LOOL/2}+RVELPP) / (R (I+1)-R(I})}
CFLth = TINC* (UTH (I, LOOL/2) +RVELEP) / (R(I) *pi/lcol)
WRITE (6,*) I, CFLred, CFLth
1310 CONTINUE
END IF

CAAGSZPMWVEIDCITYTOZ}ROWSXNDGIHESKXESWS
Cc(4/27) RVELFP = Q.
RVEIP = RVELPP/SCRT (TIME}
RMM = 3.*pi*time*mnam
DCENT = DCENT*PI*TIME
IF (RADDD/CIRC.LT.Q) THEN
WRITE (6, 1999) RADpo/CIRC
1999 FORMAT (X, 'RADDp/CIRC = ', F16.8)
ELSE
RADDo = RADpD/CIRC
END IF

WRITE (LWRTTE, 1010) TIME

WRTTE (IWRTTE, 1015) CIRC
WRITE (6,1003) DCENT

1003 FORYAT (X, *the centroid camputed by GQ is *,F16.8)
WRITE (6,1002) RCM

1002 FORMAT (X, *H(t)/ (2/3)1/rho is *,F16.8)
WRETE (6, 1001) RADED

1001 FORAT (X, *RADpp IS *,F16.8)

C write impulse and related quantities
WRITE (LWRITE, 1020} RIMPMP
WRITE (LWRITE, 1030) RIMPGQ
WRITE (IWRITE, 1040) RIMPMP-RIMPGQ
WRITE (LWRITE,1050) DIMP

C write propagation speed and related quantities
WRITE (LWRITE,1060) RVELPP
WRITE (LWRITE, 1070) SAFVEL

c WRITE (LWRITE, 1040) SAFVEL - (RVELPP ™4 . *PI*RADppe/ G
WRITE (IWRITE, 1040) SAFVEL - RVELPP

1010 FORMAT (X, 'time (sec) =*,F16.8)

1015 FORMAT (X, ‘camputed circutation =',F16.8,/)

1020 FORAT (X, *irpulse (L*4/T) (mutipole expansion) =',F16.8)
1030 FORAT (X, ‘irpulse (L"4/T) (Gauss Quacrature)=',F16.8)
1040 FORMAT (X, *diff = ', Fl16.8,/)

1050 FORVAT (X, 'd(Lrpulse)/dt (Gauss Quadrature =*,E16.8,/})
1060 FORVAT (X, 'provagation speed (non—dim) =',F16.8)

1070 FORMAT (X, *Saffman propagation velocity (non-dim) =!,F16.8)

C camute RMS difference and maximum error for the Stoxes soiuticn at
¢ eacn time step.

c Every xt steps, camute the energy and dissipation and write glomal !
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[

[+

210
200

[

230

220

c
c

oMt = ((iLOOP-1) /NGLOBAL) *100000
o2 = ((iLooP-1)*100000} /NGLOBAL
IF (IDUMI-IDM2.EQ.0) THEN
IF (JGLOBAL.EQ.0) THEN
NIGIOBAL = (nrLOCP-1)/NGLOBAL+L
WRITE (LGLOBAL) iRCN,GAM, TIME,CtR
WRITE (LGLOBAL) TINC,NVAX, IMAX
WRITE (LGIOBAL) nrglcbal
BND IF

campute energy and dissipation

Dissipation by matrix multiplication
DISssIP = O.
DO 200 LI = 1,IMAX
RL = REAL (LI}
CTEMP = — (4.*PI*RL* (RL+1.))/(2.*RL+1.)
CALL MATMULT2 (LI, NVD, IMD, 5, ALP, NMAXA, BMATS, DISV)
DO 210 NI = 1,NVAXA (LI}
DISSIP = DISSIP + CTEMP*DISV (NI}*ALP (NI,LI)
CONTINUE
CCNTINUE

DISSIP = ~DISSIP/ (2.*VISC*TINC*SORT (TIME} )

Energy by Gauss Quadrature
ENERG = 0.
DO 220 T = 1,NC0L
ENERGL = 0.
DO 230 J = 1,NCCL
ENERGL = ENERGl + (UR(I,J)*UR(I,J)+UTH(I,J)*UTH(I,J})

> " *WITH (J) /WFth

CONTINUE

ENERG = ENERG + ENERG1*F2J2C (I)
CONTINUE
ENERGY = ENERG*PI*SORT (TIME)

WRITE (LGLOBAL) TIME, CIRC, RADep, RVELoD

WRITE (LGLCRAL) ENERGY, DISSIP, RIMPMP, RIMPGQ, DIVP
YGIoEAL = 1
0D IF

Go FRM real space TO wave space

C Canpute this part of the code in the first pass only.

74

76

n

O

IF (1100P.EQ.1) THEN

DO 74 LI=1,IMAX
RL = REAL(LI)
CCEF (LI) = — (2.*RI+l.) / (2.*RL* (RL+1.))
Do 75 J = 1,L00L
POFN (LI, J) = PO(LI,J) *WITH (J)
PIFUN(LI,J) = P1 (LI, J)*WITH(J)
CONTINUE
CONTINUE

DO 76 I=1,NQOL
RD2(I}) = 0.5*R(I)
CONTINUE
END IF
convective tem in the Navier Stokes Equations.
DO 70 LI=1,IMAX

oo 71 I=1,NCOL

SIMIA(I) = O.
SAPA(I) = 0.
CONTINUE

integrate wrt theta, for all LI
DO 165 J = 1,IC0L

RVTH = RVELPP*STH(J)
RVR = RVELPP*CTH(J)}

DO 160 I=1,NCOL

[ WHEN CCMPUTING THE STOKES SOLUTION SET RVELPP,UTH,UR = O.
C (ALSO SEE ABOVE)
C UTH(I,J) = Q.
(o R(I,N = 0.
SIMLA(I) = SIMIA(I)+ (UTH(I,J)+RVTH)* QEG(I,J) *POFUN(LI,J)
SPA(I} = SIMA(I)+ ( UR(I,J)~ RVR
1 - RD2(I}
2 }*QEG (I, J) *PIFIN(LI, J)
[of end of { loop
160 CONTINUE
C end of J loco
165 CONTINGE

C erd of transformation wrt theta...

C Inteqrate

wrt r, for all NIP and LI

DO 151 NIP=1,NVRXA(LI)
Plam(NIP} = 0.0
P2dm(NIP) = 0.0

151 CONTTNGE
DO 161 I=1,NCOL
TEMPl = SIMIA(I)*FR2AC(T)
TEMP2 = SIMZA(I)}*F2AC(I)
DO 150 NIP=1, NVAXA (LI}
Pldm(NIP) = Plam(@IP) + TEMP1 * GR(NIP,LI,I)
P2cum (NIP) = P2cim (NIP} + TEMP2 * GTHWIZ,L1I,I)
[of erd of NIP looo
150 CONTINUE
o end of 1 loco
161 CONTTINCE
DO 152 NIP=1,NMAXA(LI)
COW (NIP, LI} = CCEF (LI)* (Plam(NIP) - P2ctm(NIP))
152 CONTTNUE
(o} end of LI loop
70 OCNTINGE
RETURN
END
C 5SSSS555ESSSSS eSS ES S SS S5 SSSSSSSS555SSSESESSS SSSSSSSSSSSSSSSSSESSSS

SUBROUTTNE CUTPUTZ2

*CALL PARMS

*CALL ARRAYS

WRITE (ICRAY) TIME, ZCcR
c WRITE (LCRAY) ((ALP(NI,LI), NI=1,NMAXA(LI}), LI=1,IMAX)
WRITE (LCRAY) (({ameg(I,J), I=1,NCOL), J=1,1CCL)

RETURN

END

C S555555555555558585558858S5S5555555 58555 858585885388

SSS58Ss 5833

SUBROUTTNE QUTPUT

*CALL PARMS

*CALL ARRAYS

WRITE
WRITE
WRITE

(L/aX,1002)
(LVAX, *} TDVE,ZCcR
(LVAX, 100C)



10

20

40

10c2
10C0
10CL
1005
10C7
10C9
101C
1C20
1030

CWWS&W&MSSW

*CALL
*CALL

caz:putechesueanf\mcciminareferencefranetranslatinqwiththe
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WRITE (LVAX,*) ROONSTD, RADppo, TREO C DIMENSIONS/CPTIONS:

WRITE (LVAX,1007) ¢ izero: 0 : do not plot zero contour level

WRITE (LVAX,*) VISC, GAM, CtR c 1 : plot zero contour level

WRITE (LVAX,1001) c NCoPT =] (input contour levels), =2 (autamatic)

WRITE (LVAX,*) iR, 1PLOT C NCCL IN F(I,J) I = 1,NCOL

WRITE (LVAX, 1005} [of 1oL J = 1,LC0L

WRITE (LVAX,*) NMRX,NCOL, IMAX,LOOL [+ NCONT mumber of contour levels
[of NXDOIM number of points in the contaur definiticns

WRITE (LVAX,1009) [of NADDIM nurber of contours

po 6 LI~-1,IMPX [ IADIM try 3000 (says Peter Buning)

WRITE (LVAX,*) LI, NVROA (LI} C ARRAYS:

CONTINUE Cc F (NCD, 1CD) FUNCTION TO PLOT OONTOURS
[of XY (NCD, 1LD) coardinates of function

WRITE (ILVAX,1010) (o4 ACONT (NCdim) (for NCONT=1) contour levels

po 10 I=1,NCCL [ XOONT (NXDIM) x values of contour lines

WRITE (LVAX,*) I,XICD(I},WIR(I} c YCONT (NXDTM) y values of contour Hnes

CONTINUE c NAD (MADDIM) ND(l): # contours, pointers to each contour lin
[ NLEV (NADDIM) values of contour levels

WRITE (LVAX,1020) C IA (TADIM) scratch array

DO 20 J=1,LCCL *CALL PARMS

WRITE (LVAX, *} J,CTH(J) ,WETH (J)
CQONTINUE

WRITE (LVAX,1030)
DO 30 LI-1,IMAX
DO 40 NI=1,NBXA (LI}
WRITE (IWRTTE,*) LI,NI,ALP(NI,LI)
WRITE (LVAX,*) LI,NI,ALP (NI, LI)
CONTINGE
CONTINUE

FORAT(5X, 'TIME', 12X, *ZCoR*)

FORAT (12X, 'ROONST*, 10X, *RADppo')

FORMAT (4X, *iRON',4X, 'iPLOT')

FORMT (9X, "NVRX®,8X, *NOCL', 8X, 'IMAX*, BX, 'LOOL' )
FORAT ( 5X, 'VISC',12X, 'GaM',5X, 'CtR')

FCRMAT (SX, 'LINDEX',10X, "NVRXA(L} ')

FORAT ( 10X,'I',7X, 'XI(I)*, 10, 'WIR({I}')
FORAT ( 10X, 'J',7X, ‘CIH(D *, 10X, "WITH (D '}
FORMBT ( 9X,'LI',10X,'NI*,7X, 'ALP (NI,1I)'}

RETURN
END

SUBROUTINE STREAMF

PARMS
ARRAYS

¢ velocity of the Saffman centraid.

20

40

50
30

DO 10 I=1,NCOL
DO 20 J=1,IC0L
SA(D) = 0.
00 30 LI=1,IMAX
. RL = REAL(LI)
st = 0.
DO 40 NI=1,NVRXA (LI)

STEMP = STEMP + GR(NI,LI,I)*ALP (NI,LI)
STEMP = STEMP*R(I)/ (RL* (RL+1.))
Do S0 J = 1,1C0L

SA{J) = SA(J) + SrEMP*PL(LI,J)

CONTINCE

¢ capute the Saffman ring

c

60
10

CW@MS&\

speed
Uo = gam* (ALOG (4.%2.24182/CtR) -~ 0.558) /(4. *pi*RADIPO}

Uo = RVELFP
Do 60 J = 1,LO0L

SFUNC (I, )= (SA(J}*STH (I *R(L) +. S*Uo*R(I) **2*STH(J)

CONTINUE
CONTINUE

RETURN
END

SUBROUTINE PLTCONT (NCD, LCD, OMEG, CTH, R, XY, SFUNC, 7}

SSS5555555555555SSSSS

PARMMETER (NCdim=25 , NXDIM=2000 , NACDIM=100 , TADTM=3000)
}, OVEG (NCD, LC0)
DIMENSION ACONTL (NCdim) ,ACONT2 Cctim) , ACONT3 (NCdim) , BOONT4 (NCeim)

DIMENSION XY(MD,IO),Z),FQ@,I.GJ),SF[M(MD,I@

DIMENSION XCOONT (NXDIM, 2)

DIMENSION NAD (NADDIM), NLEV (pDOTM), IA(IADTM)
DIMENSICN blankc (WDTM

10GICAL LABELS

DIMENSION CTH(LCD),R(NCD)
REAL LEFT

IABELS = .FALSE.

C intilize disspla

C set

C two

IF (J2PIOT.1E..5)THEN
CALL DIP(15)
$2P1L0T = 1.
BD IF
CALL PAGE (8.5,11.)
CALL HWSCAL (*SCREEN'}

character type and size

CALL SQPIX

CALL MX1ALF (‘L/CSID*,'}')

CALL MX2ALF ('STANDARD, * (')

CALL MX3ALF ('L/CGREEX','$')

CALL MX4ALF (‘GREEK®,‘!'}

CALL MXSALF ('INSTRU','\')

CALL MXGALF ('MATH','*')

CALL HEIGHT(0.12)

label axis with integer numbers

CALL INTAXS

do not plot outside of subplot area
CALL GRACE (0)

comnect points with a polyncmial fit
CALL POLY3

an't check far points which are cut of range
CALL NOCHEX

C lower plot, page 1 — expanding coordinates
¢ Plot of w't'~2 in self similar cocrdinates

20

CALL PHYSOR(1.25,7.75)
CALL AREAZD (6.25,2.5)

CALL MESSAG('RIN (#) $,100,5.2,2.75)
CALL INTNO (LRIN, 'ABUT', 'ABUT')

CALL MESSAG('FRAVE (#) $,100,5.2,2.55)
CALL INTNO(iFLOT, ‘ABUT', 'ASUT")
CALL ENDGR{0)

DO 10 I=1,NCOL
DO 20 J=1,LC0L
STH = SCRT(l. —~ CTH{J)*CTHII))
XY(1,J,1) = R{I}*CTH (J)
XY (I,J,2) = R{I)*STH
F(I,J) = QEG(I,N*TDRE
OONTINUE
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10 CONTINUE

NCCPT = 1
NCONTZ = 20
izero = 0

CALIL PHYSOR(1.5,2.25)
LEFT = ~5.

RIGHT = 5.

gor = 0.

00 = S.

SCALE = 6./ (RIGHD-LEFT)
XDIST = RIGHT-LEFT

CALL AREAZD (SCALE* (RIGHI-LEFT) , SCALE* (TOP-BOT) }

CAIL RWME('X/ (1Rt () \EH.5)1/2\EXHX) $*,100)
CALL YNAE('Y/ (R E() \BL5) 1/2\8aK) S, 100)

CALL XREVIX
CALL YREVIK
CALL GRAF (LEFT,1.,RIGHT,BOT, 1., TCP)

CALL CONTXX (D, LD, 1, NOUIL, 1, LOOL, XY, F, NCOPT, NCDIM, NOONT2,
1 ACONT?2, NXDIM, XCONT, XOONT (1, 2) , NaDDIM, NAD, NLEV,
2 1ADIM, IA, FMINZ, FMAXZ, 1 zero)

CALL OONDI2 a,z,mems,mm.mwmmmm,xm,m,m,

1 BACONT2, BLANKC)

CALYL, RESET ('XREVIK')

CALL RESET ('YREVIX')

CALL XNONCM

CALL YNONUM

CALL XGRAXS (LEFT, 1.,RIGHT, SCALE* (RIGHT-1EFT), * ',1,0.,

1 XDIST™*.S*SCALE)

CALL YGRAXS (BOT, 1.,TOP, SCALE* (TOP-BOT) , * ',1,XDIST*SCALE, C.)

CALL THKFRM(.02)
CALL FRAME
CALL ENDGR(O)

CALL RESET ('X0NM')
CALL RESET (*YNONIM')

C care
€ Second plot - physical coordinates

XYSC = SORT (TDRME/TIMEO)
DO 15 I=1,NO0L
Do 25 J=1,ICCL

STH ~ SQRT (1. - CTH(J) *CTH(J))
XY (I,J,1) = (R(I)*CTH(J)*XYSC) /RADppo + ZCoR
XY (I,J,2) = R{I)*STH*XYSC/RADDPO
F(I,J) = QYEG(I,J)*TIMEo**2/TE

25 CONTINUE

15 CONTIME

izero = 0
NCONT1 = 20
IF (4PICT.EQ.Q) THEN
NoPT = 1
ELSE
NCCPT = 2
CALL m@m,m,l,m,l,rmuanm,nmy
BN IF

C "p" 1s used here to mean mphysical® space.
CALL PHYSCR(1.5,6.75)

C sScale the plot so that the ring is inside the box.
IF ({PLOT.EQ.0) PXDIST = 6.
IF (ZCoR.GT.PXDIST-1} PXDIST ~ PXDIST*2.
IF (RADPP/RADPPO*.S.G“.PXDISI‘/‘L) PXDIST = PXDIST*2.

PLEFT = -1.

PRIGHT = PLEFT+PXDIST
PECT = —PXDIST/4.
PICP = PXDIST/4.
PSCALE =~ 6./PXDIST

CALL AREAZ2D (PSCALE® (PRIGHT-PLEFT), PSCALE* (PTOP-PBOT))

CALL XREVIX
CALL YREVTK
CALL X0RME (*X/ (R} \LH. 6) O\LXHXS* , 100}
CALL YNAME (*Y/ (R) \LH.6)O\LXHXS*, 100}

CALL GRAF (PLEFT,1.,PRIGHT, PBOT, 1.,PTOP)

NooeT = 1

CALL C(NDO((MJJ,I&D,I,M,I,L@L,XY,F,MIPT,MDIM,MH,
1 mn,mmxm,xmu,m,mwmm,mzv,
2 IADIM, IA, FMINL, FMRX1, izero)

CALL CONDI2 a,z,mm,mmmmmmm,xm,m,m,
1 BAOONT1, BLANKC)

CALL DASH
CALL RLVEC (PLEFT,O. ,PRIGHT,0.,0)
CALL RESET('DASH'}

po 50 I = 1, NAD(NAD (1) +1)-1
XOONT(I,2) = ~XCOONT(I,2)
CONTINGE

CALL CONDI2 (1,2,mms,mmmmmmm,rcmﬂ,xm,m,m,
1 AOONT1, BLANKC)

CALL XNONM

CALL YNCNUM

CALL FESET(*XREVIX')

CALL RESET(*YREVIK')

CQALL XG?AXS(PH-IT,L,PRIGHI‘,PSILE'(FRIG{E—E’IEFT), ¢ 1,0,

1 PXDIST* .5*PSCALE)

CALL YGRAXS(PECT,1.,PTOP, PSCALE* (PTOP-PRCT), ' .,

1 1,PXDIST*PSCALE,O.)
CALL THKFRM(.02)

CAIL FRAME

CALL ENDGR(Q}

CALL ENDPL(~1)
CALL RESET (*XNCNM')
CALL, RESET (" YNONM')

C four
¢ plot stream function in coordinate system translating rirg speed.
C First plec, second page - expanding coordinates

43
44

CALL PHYSOR(1.25,7.75)
CALL ARFAZD (6.25,2.5}

CALL MESSAG('RIN (#) $',100,5.2,2.75)
CALL INING (1RON, 'ABUT', ‘ABUT')

CALL MESSAG ('FRAME (F) $+,100,5.2,2.55)
CALL INTNO (1PLOT, *ABJT, 'ABUT'}
CALL ENDGR(0)

DO 44 I=1,NCCL
DO 43 J=1,1L0L
STH = SORT (1. - CTH(J)*CTH(I))
XY (I,J,1) = R(I}*CTH(J
XY (I,J,2) = R(I}*STH
F(I,J) = SUNC(I, ) *TRE/TDEC
CONTINUE
CONTINUE
ICOL2 = LCCL

! plet the conours of Psi

C Find aropriate intervals

c

the # of positive contours (inside the ring): NPCQNT
NPCONT = 7
CALL mm,m,z,mgz,mzﬁ,mmmxu
frerp = st (MAX4)
CALL CONSCL(C., ﬁa@,mm,m,m4,1)

DCINT = (ACRTA (2)~ACQNTA (1) y*re
NCONT4 = 3*NPCONT ! total numper of contours
DO 60 I = 1,2"NPCONT ! negative contour leveis
ACONT4(I) = —DCONT (I-2*NPOONT) **2
CCTINE
DO 61 I = 1, NPCINT
BCONT4 (1+2*NPCONT) = DCONT*I*"2

! positive contour levels
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CONTINUE
izero = 1
NCOPT = 2

! plot zero contour level
1 contour levels are irput

CALIL PHYSOR(1.5,2.25)
LEFT = -5.

CALL AREAZD (SCALE* (RIGIT--LEFT) , SCALE* (TOP-BOT} )
CALL XREVTK

CALL YREVIX

CALL X@ME ('X/( ()3t () \EH. 5)1/2\EXHX) $* , 100)
CALL YNAME ('Y/ ()3t () \EH. 5) 1/2\EXHX) $*, 100)
CALL GRAF (LEFT, 1.,RIGHT,BCT,1.,TCP)

CALL D, LCD, l,bCOL,l,I.CDLZ,XY,F,bCOPI‘,M)D‘LmI’4,
1 mq,mm.xm,xmu,z),mmw,mv,
IADIM, IA, FMING, FMAX4, izero) .
CALL CDI2(1, Z,IABEIS,WMMDDIM.MDMWQ,X(INT,MD,NIEV,
1 ACONT4, BLANKC)

CALL RESET (*XREVIK')
CALL RESET('YREVIK')

CALL XNONM
CALL YNONUM

CALL XGRAXS (LEFT, 1.,RIGHT, SCALE* (RIGHT-LEFT), ' ',1,0.,

1 XDIST*.5*SCALE)

CALL YGRAXS (EOT, 1., TOP, SCALE* (TOP-B0T} , ¢+ +,1,XDIST*SCALE, 0.}
CALL THKFRM(.02)

CALL FRAME

CALL ENDGR(Q)

CALL RESET ("XNONM')
CALL RESET (*YNCNM')

cC three
o€ seccnd plot, second page

[+]

26

16

XYSC = SORT (TIME/TIMEO)
DO 16 I=i,NCOL
XY(I,1,1) = (R(I)*XYSC)/RADppO + ZCR
XY(L,1,2) = 0.
F(.1) = 0.
DO 26 J=1,L0OL
STH = SCRT (L. = CTH(J)*CTH(J))
XY (L, J+1,1) = (R(I)*CTH(J)*XYSC)/RADppO + 2CcR
XY (I,J+1,2) = R(I)*STH*XYSC/RADPPO
F(I,J+1) = SEUNC(I,J) *SORT (TIME/TIMEO)

CONTINCE
XY (I,1COL+2,1) = (-R(I}*XYSC) /RADppo + ZCoR
XY (I, 1C0L+2,2) = 0.0 .
F(I,1com#2) = 0.
CONTINUE

CALL PHYSCR(1.5,6.75)

CALL AREAZD (PSCALE* (PRIGHT-PLEFT), PSCALE* (PTCP-PBOT) )
CALL XREVTK

CALL YREVTK

CALL YNBME (* X/ (R} \IH.6)ONLXHXS *, 100)

CALL YNAME ('Y/ (R} \LH. 6) O\LXaXS ', 100}

CALL GRAF (PLEFT, 1., PRIGHT, PBOT, 1., PTOP)

NCOPT = 2

lecol2 = lool+2

C FCR NOW, IET (13-4

62

NCONT3 = NCONT4

DO 62 I = 1,NCONT3
ACONT3(I) = AOQNT4 (I)

CONTINUE

CALL CONTXX (NCD, L3, 1, NCCL, 1, 1COL2, XY, F, NCCPT, NCD M, NOONT3,
1 ACONI‘3,:0<DD’!,XG)NI’,XCONE(1,2),NADDD‘LW,!-""J’_V,

2 IADIM, IA, FMING, FMAX3, izero)
CALL CONDI2 (l,Z,MBHS,MIM,MIM,MDIM,m,XCM, NAD, NLEV,

CALL DASH
CALL RIVEC (PLEFT,O.,PRIGHT,C.,0)
CALL RESET('DASH'}

Ccc scales plot to fill plotting region

DO 75 I = 1, NAD(NAD(1)+1}-1
XOONT(I,2) = -XCONT(T,2}
CONTINUE

CALL CCNDI2 (1,2,mams,mmmmm,mm,unm,xocm,mn,m,
1 BACONT3, BLANKC)

CALL XNOWUM
CALL YNONUM
CALL RESET(*XREVTK®)
CALL RESET(*YREVIK')

CALL XGRAXS (PLEFT, 1. ,PRIGHT, PSCALE* (PRIGIT-FLEFT), * ' 1,0.,

1 PXDIST* .. S*PSCALE)

CALL YGRAXS (PBOT, 1., PTOR, PSCALE* (PTOP-FRUT), * °*,

1 1,PXDIST*PSCALE,Q.)
CALL THKFRM(.02)

CALL FRAME

CALL ENDGR(0}

CALL ENDPL(-2)
CALL RESET (*XNCN(M')
CALL RESET (*YNCNM'}

C write quantitive information on next page

RED = RVEIDP*RADED*2.
REI = 1./SORT (TIME)
U32 = RVELPP*TIME

CALL PHYSOR(1.25,7.75)

CALL AREAZD (6.25,2.5)

CALL HEIGHT (.12}

CALL MESSAG (*\P) (I)NPUTS:\U} $*,100,0.,2.25)

CALL QPIX
CALL HEIGHT (.11)

CALL MESSAG('RUN (#) $*,100,5.2,2.73)
CALL INTNO (1RIN, 'ABUT’, 'ABUT")

CALL MESSAG('FRRE (#) $',100,5.2,2.5)
CALL INTNO ({PLOT, *ABUT*, 'ABUT'}

CALL MESSAG (*TIME STEP (#) $',100,5.2,2.25)
CALL INTNO(Li10CP, ‘ABUT®, *ABUT')

CALL MESSAG('!G)/%) = $',100,0.9,2.25)
CALL REAINO (GAM,1, 'RBUT', 'ABUT*)

CALL MESSAG('a/ (R} = §',100,0.9,2.0)
CALL REAINO (CtR,2, 'RBUT*, 'ABUT")

CALL MESSAG(*\!D}\P1) {t}\P2)\GI}\EL. 15} *PINEX}\G2} = §*,
1 100,0.9,1.79)
CALL REAINO (TINC, 6, ‘ABUT*, 'ABUT"}

CALL MESSAG (*\P1 }T \E1.2V1) \L#.7}o \EXHX ) = $',100,2.4,2.2%)
CALL RFAINO(TIMEO,=~6, 'ABUT', 'ABUT’)

CALL ININC (NMRX,2.4,2.0)

CALL MESSAG{' X $',100, 'ABUT’, 'ABUT")
CALL INTNO (LMAX, 'ABUT, *ABUT")

CALL MESSAG{' MIDES $',100, 'ABUT', 'ASCT')

CALL ENDGR (0}

CALL PHYSOR(1.25,7.25)

CALL AREAZD (6.25,2.5)

CALL HEIGHT(.12)

CALL MESSAG{'\P) (C}URRENT (I)NFORMATIN:\U) $*, 1CC, 0., 1.52)
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CALL HEIGHT(.11)
C colum 1:

CATL MESSAG ('\P1 )T \E1.3V1) \BOHX) = §',100,0.,1.0)
CALL REALNO (TIME, -6, *ABUT', *ABUL*)

CALL MESSAG (* (R} e\LH. 6 (D\EXHX) = s*,100,0.,.75)
CALL REALNO(RED, 1, *ABUT", 'ABUT"}

CALL MESSAG (* (R)e\LH. 6 {L/\SR\EXHX) = $*,100,0.,.5)
CALL REAINO(REI, 1, *ABUT’, ‘ABUT')

CALL MESSAG('!G)/%N) = $*,100,0.,.25)
CALL REALND (CIRC, 1, *ABUT*, ‘ABUT')

C colum 2:

CALL MESSAG{

1*\P1) (U)\EI.INI)\DG{X)\PZ)T\EI.M)\EGD()\E.HJ)B/Z\DGD() =3,
2 100,2.0,1.0)

CALL REAINO (U32,-3, 'ABUT", ‘ABUT*)

CALL MESSAG{*X\IH.6)C\LXHX (/R) \LH. 6)O\IXHX) = s,
1 100,2.0,.75)
CALL REALNO (ZCoR, 4, 'ABUT*, *ABUT')

CALL MESSAG (
1‘\21))(\22)\61)\51.0)*P)\D()\G2)\IH.6)C(GQ)\DGD() =$',
2 100,2.0,.5}

CALL REAIND (DCENT, -4, *ABUT*, *‘RBUT')

CALL MESSAG ("\P1) (R} \P2)\G1) \E1.05) *PI\EX)\G2} = §',100,2.0,.25)
CALL REALNO (RADoo, 4, 'ABJT*, 'ABUT")

C column 3:

CALL MESSAG(* (I/\%R \IH.6 (GQ \EXiX) = $',100,4.2,1.0)
CALL REALNO (RIMPGQ, -6, 'ABUT', 'ABUT")
CALL MESSAG (*\S1) (I/ARR \EXHX) $',100, 'ABUT®, 'RBUT')

CALL MESSAG (' (I/\%R \IH.6 (P \EXHX) = $',100,4.2,.7%)
CALL REAINO (RTMPMP, -6, 'ABUT®, ‘ABUT')
CALL MESSAG (*\S1) (ISR \EXHX) $*,100, *ABUT*, 'ABUT")

CALL MESSAG('3/2 *: (U)d(v) = $',100,4.2,.5)
CALIL REALNO (RVCM, 4, 'ABUT', ‘ABUT')

CALL ENDGR(O)

C WRITE OUT NOMERICAL INFORMATION
CALL PHYSOR(1.25,2.00)
CALL AREA2D(5.75,4.75)
CALL RESET ('HEIGHT')
CALL SQ¥PLX

C one INFO

CALL NESSPG('\Pl)%El.Z)\Vl)\Sl)\DNX)\P3)T\P4)\El.2)\‘f3)
1 \EXVX)\G4}\LH.7)o\IXHX) \B1) \EH. 7) 2\EX¢X) $+,100,0.0,4.5)

c CALL MESSAG (' #8\S1) TAIH. 7) O\LXHX) \BL ) \EH. 7) 2\EX}X) X
c 1,100,0.0,4.5)

CALL HEIGHT (0.1)

CALL MESSAG{'MAX =~ §',100,0.0,4.1)
CALL REALNO (FMPX1,-3, 'ABUT', ‘ABUT')
CALL MESSAG ('MIN = §',100,0.0,3.9)
CALL REAINO (FMIN1, -3, 'ABUT", *ABUT")

CALL MESSAG (' contour levelss*',100,0.0,3.6)
CALL SIMPLX
CALL HEIGHT (0.C8)
po 30 I = 1,MCQNTL
IF (ACONT (I).EQ.C.) GCTO 30
CALL REALNO (ACQNT1 (I}, 5,0.2,3.4-0.117(1-1))
30 CONTINUE
CALL RESET('HEIGHT')
CALL SPIX

C two INFO

CALL }E‘SS’\G('\PI)W\El.Z)\Vl)\Sl)\DNX)\PJ)'I’\P‘i)\El.Z) \v3)
1 \EXVX)\G4)\EH.7) 2\EXHX) $',100,1.75,4.5)
CALL MESSAG (* #W\S1)T\EH.7) 2\EXHX} $',100,1.75,4.5}

c
CALL HEIGHT (0.1)
CALL MESSAG (‘MAX = $,100,1.75,4.1)
CALL REAINO (FMAXZ,~3, ‘ABUT", ‘ABUTL")
CALL MESSAG('MIN = $+,100,1.75,3.9)
CALL REAINO(FMINZ2,-3, 'ABUT', ‘ABUT*}
CALL MESSAG (' contour levelss$*,100,1.75,3.6}
CALL SIMPLX
CALL HEIGHT (0.08)
Do 31 I = 1,NOONT2
* IF (AOONT2(I).EQ.0.) GOTO 31
CALL REALNO (ACONTZ (I}, 5,1.95,3.4-0.11* (I-1})
31 CONIINCE
CALL RESET('HEIGHI'})
CALL SOPIX
C three INFO
CALL MESSAG(*\P1) IY\E1,2)\V1)\SI)\EXVX) \P3) TAP4) \E1.2)\V3}
1 \D(VK)\G4)\IH.7)0\DGD()\BD\B-L7)-1/2\DGD() $,100,3.5,4.5)
c CALL r&‘ssm('!Y\Sl)'l‘\lH.?)o\DGD()\Bl)\mJ)—-l/Z\DGD() s*
c 1 ,100,3.5,4.5)
CALL HEIGHT (0.1}
CALL MESSAG (*MAX = §+,100,3.5,4.1)
CALL REAIND(FMAX3,-3, 'ABUT, 'ABUT*)
CALL MESSAG (*MIN = $',100,3.5,3.9)
CALL REAINO(FMIN3,-3, ‘ASUT’, 'ABUT)
CALL MESSAG (' contour levelss',100,3.5,3.6)
CALL SDMPIX
CALL HEIGHT(0.C8)
DO 32 I = 1,NCONT3
CALL REALNC (ACCNT3 (I),S,3.7,3.4—O.ll*(1—l))
32 CONTIME
CALL RESET('HEIGHT')
CALL sCPIX
C four INFO
CALL MESSAG(*\P1) IY\EL.2)\W1)\S1)\EXVX) \P2) T\P4) \E1.2)\V2}
1 \E}NX)\G4)\EH.7)l/Z\DCHX)/\p3)t\E1.2)\V3)\DNX)\I.H.7)o\D(‘r:() S
2 ,100,35.25,4.5)
c CALL M-:ssc('!Y\51)1\m.7)1/2\m-m)\51)/'r\m.7)o\m-n() s,
c 1 100, 5.25,4.9)
CALL HEIGHT (0.1)
CALL MESSAG ('MAX = $+,100,5.25,4.1)
CALL REAINO(FMAX4,-3, ‘ABUT', YABUT')
CALL MESSAG('MIN = $*,100,5.25,3.9}
CALL REAINO (EMIN4,-3, ‘ABUT", ‘ABUT')
CALL MESSAG (*contour levelss',100,5.25,3.6)
CALL SIMPIX
CALL HEIGHT (0.08)
DO 33 I =~ 1,NCONT4
CALL REALNO (ACQNT4 (I),5,5.45,3.4—0.11* (I-1))
33  CONTINCE
CALL RESET('HEIGHI')
CALL sSOPLX

CALL ENDPL (=3}

RETURN

X X e OO CCOX XCCOCCICTT]

naoanan

SUBROUTDE CONDXX (IDIM, DM, IS, IE, s, JE, XY, F, NCOPT, NCDIM, NCQHT,
€ ACQNT, XX T, XCONT, YOONT, NACO M. NAD, NLEV, IADIM, 1A,
C FMEIN, PMRX, Lzero)

1 GOT THIS AND THE FCLICWING 3 SUBROUTINES FRM PIETER G. BUNIN

(&ASA AVES RESERACH CENTER)
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Calculate contour lines for the function F in the region IS to IE, JS to
JE. X,Y coordinates corresponding to the grid points are in array XY.

If NCOPT=1, figure our own contour levels, up to NCONT of them, using
wnice™ numbers. FRANGE finds the function range in the given region, an
COONSCL carputes the contour levels. Note that NOONT will be revised
Gowrsiard to correspond to the number of contour levels actually used.
The contour levels calculated are returned in the array ACONT.

If NOOPT=2, calculate lines for the NOONT contour levels specified in
ACCNT.

The contour lines are returmed in arrays XCONT, and YOONT. MAD(1)

glves the nurber of contour lines, and NAD(n) points to the start of the
nth line (i.e. NAD(n+1) points to cne past the end of the nth 1line).
NLEV (n) returns the contour level of the nth contour line.

IA is a scratch array. Try a dimension of 3000.

DIMENSION XY (IDIM, JDIM, 2), F (IDIM, JDIM)
DIMENSICN ACONT (NCciir)

DIMENSION XCONT (NXDIM) , YOONT (NXDIM)
DIMENSICN NAD (NACDIM) ,NLEV (NADDTM) , IA (I2DTM)

[
C If NeCPT=1, figure our own comtour levels, @ to NOONT of them, using
¢  “nice® numbers. FRANGE finds the function range in the given region, an
C CONSCL camputes the contour levels. Note that NCONT will be revised
¢  downward to correspond to the number of contour levels actually used.
o .
c IF (NCOPT.EQ.1) THEN
QILL E'RANE(IDD‘LJDDLIS,IE,JS,JE,F,FM[N,MX)
IF (NCOPT.EQ.1l) THEN
CATL CONSCT (FMIN, FMAX, NCD DM, NCONT, ACCNT, 1 2er0)

ENDIF
c ek i

DO 2222 I=1,IADIM
2222 IA(I)=0
c XK

=3
c

ND(1)= 1

NLINEP= 2
(o]
¢  One little check. If IS=IE or JS=JE, return with no contour lines.
o

IF (IS.BQ.IE .CR. JS.EQ.JE) GOTO 110
[
¢ loop through each contour level.
c

DO 100 ICONT= 1,NCONT
ZA= ACONT (ICONT)
M=0

C **** SCAN POINTS AND DETERMINE POINTS CF IA

601
600
clt‘.'
101

DO 600 J= JS+1,0E-1

MB=0

DO 600 I= IS,IE

IF (F(I,J).1E.2ZA}) GO TO 601
IF(IMB.NE.1} GO TO 600

M+l

IFM.GT.IADIM) & TO 210

IA (M) =1000*I+J

B=0

® TO 600

MB=1

CONTINUE

SEARCH START POINT ON BONDARY LINE
IMA=1

IMB=0

D= IS-1
IYA= J5
IXA=IXA+L
IF(IXA.EQ.IE)
@ ™ 5
IYA=TYA+1

IF (TYA.EQ.JE}
® TO 5
IXA=IXA-L

D=2

DA=3

4
5
6

7
Crrrr

12

i3

10

Cruss
20
21

By

40
41

602
Crexw

61

62

63

64

Crenw

65
Crexe

IF (DAL EQ.IS)
60 10 5
TYA=IYA-1
IF(IYA.BQ.JS) IMA=5
IF (F(DA, IYA) .GT.ZA)
MB=1

co T (1,2,3,4,91),nR
IF(IMB.NE.1) &0 TO 6
DETERMINE START POINT
IMB=0

IX=TA

IY-IYA

S=F (DA, TYR)

6 ™ (21,11,12,13,51), M
IF(IY.NE.JS) & TO 31

@ o 24
IF(IX.NE.IE)
® T0 31
IF (IY.NE.JE)
® T0 41
IX=IA(N) /1000
Iy~IA (N)-1000*IX

S=F (X, IY)

IA Q) =0

@ T0 21
PROCESS TO SEARCH PIOT POINT
IY=IY+1l
IX=IX-1
IF(IX.LT.IS)
I=1

IF (F (IX, IY) .LE. ZA)
S=F (IX, IY)
®© To 31
IX=TX-1
TY=IY-1

1IF (IY.LT.JS)
I=2

IF (F (IX, 1Y) . LE.7A)
S=F (IX, IY)
® 1o 41
IY=IY-1
IX=DX+1

IF (IX.GT.IE}
I=3

IF (F (IX, I¥) LLE. ZA)
S=F (IX, IY)
@ To S
IX=TX+1
IY=TY+1
I=4

IF (IY.GT.JE)
IF (F (IX, IY) .IE.ZA)
S=F (IX, IY)

® 0 2
IFM.EQ.0) G T €0
IK=1000*Ix+TY+1000
Do 602 =1,M
IF (IA(J) .NE.IK)
IA (D=0
QONTINUE
CAICULATE PLOT POINT

XYF= (ZA~F (IX, IY} ) / {S-F (XX, I¥})

® TO (61,62,63,64),1

WXK= XY (IX, TY, 1) +XYF* (XY (IX+1, IY, 1)=XY (IX, IY, 1))
WYY~ XY (IX, Y, 2) +XYE* (XY (IX+1, 1Y, 2) XY (IX, 1Y, 2})
@ T0 65

WK~ XY (IX, IY, 1} +XYF* (XY (IX, TY+1, 1) =XY (IX, 1Y, 1))
WYY= XY (IX, IY, 2) +XYF* (XY (IX, TY+1, 2}-XY (IX, IY, 2))
@ O 65

W= XY (IX, IY, 1) $XYF* (XY (IX~1, IY, 1)-XY (IX, 1Y, 1})
WYY= XY (IX, IY, 2) +XYF* (XY (IX~1, 1Y, 2)-XY (IX, 1Y,2))
® To 65

WXK= XY (IX, IY, 1) +XYF* (XY (X, IY-1,1)-X¥ (IX, IY, 1))
WYY~ XY (IX, I¥, 2} +XYF* (KY (IX, T¥-1,2) XY (IX, I¥, 2})
PLoT

MA=d

GO0 ™ 7

© TO 41

® TO 51

@ TO %0

G TO 52

© TO %0

GO TO €0

© T0 %0

G0 TO &

e TO %0
G0 ™ &0

G To 602

CONTTNUE

DECIDE IF PLOT POINT EQUAL INITIAL PLCT POINT
IF(IA.NE.3) GO TO 66
NpP=1

NAD (NLINEP}= NAD (NLINEP-1)



I. Navier-Stokes Code

149

NLEV (NLINEP-1) = ICONT
NPT=Q
XCONT (NAD (NLINEP) } = WXX
YCONT (NAD (NLINEP) } = WYY

66 CONTINUE

NAD (NLINEP) = NAD (NLINEP) +1

IF (NAD (NLINEP) .GT.NXDIM} GOTO 220
NP=NP+1

XCONT (NAD (NLINEP) } = WXX
YOONT (NAD (NLINEP) ) = WYY

IF (NP .ILT. 200) GO TO 6602

CALL DRAWZD (PT,NP, 2,2, 0)
NPT=NPT+NP
Np=1
PT (1,1}~ wxx
PT(2,1)= WYY
602 IF WXX.NE.WX) GO TO 67
IF WYY.EQ.WY) GO TO 90
Cr*** DETERMINE NEXT PROCESS
67 & TO (50,20,30,40),I
90 Iw=3
NAD (NLINEP) = NAD (NLINEP)+1
IF (NAD NLINEP).GT.NXDIM) GOTO 220
IF (NP.GT.1) THEN
NLINEP= NLINEP+1
IF (NLINEP.GT.NACDIM} GOTO 230
ENDIF
C IF (NP .GT. 1) CALL DRAWZD (PT,NP,2,2,0)
IF(IMA.NE.S) GO TO 6
Cr***  SEARCH START POINT
IF M.EQ.0) GO TO 92
91 DO 603 N=l,M
IF(IAN).NE.O) GO TC 10
603 CONTINUE
92 CONTINUE
Cr=** CAICULATE VAIUE OF NEXI CURVE
100 OONTINUE .
C
110 CONTINUE
NAD (1)= NLINEP-2
RETURN

Xt N EesNe e NeNe]

Cc

€ Waming - IA array full.

c .

210 CONTINUE
WRITE(6,211) IADIM

211 FORMAT(* Warning - Scratch array IA full in contour routine ¢,

C 'OONIXX. '/

[of ' Picture may be incamlete. Array was dimensicned °,

C I5,'."

GOTO 101
Cc
C  Warning — XCONT array full.
Cc

220 CONTINUE
WRITE (6,221) NXDIM

221 FCRMAT(* Warning -~ Contour line array XO&NT full in contour °*,

C 'routine CONIXX.'/

[of * Plcture may be incamwlete. Array was dimensicned °,
C IS,'.Y)
GCTO 110
C
C Warming - NAD array full.
c
23C CONTINUE

WRITE (6,231) NADDIM

231 FORAT(* Warning - Contour line painter array MNaD full in °,

C ‘contour routine CONIXX.'/

C ¢ Plcture may be incarpiete. Array was dimensicned *,

C I5 ')
o 110
BD

C X A OO GO

SUBROUTINE FRANGE (IDIM, DM, IS, IE, JS, JE, F, FMIN, FMAX)

IE, J5 to JE.

el eNe]

DIMENSION F (IDIM, JDIM)

FMIN= F (IS, JS)
FMAX= EMIN
DO 10 J= J5,JE
DO 10 I~ IS, IE
FMIN= AMINL (FMIN,F(I,J)}
FMAX= AMAXL (FMAX, F(1,3))
10 CONTINUE
RETURN
END

[06006000600086000000000660000000888800000000000000680604

OO X

SUBROUTINE CONSCL (AMIN, AMAX, NCDIM, NCONT, ACCNT, 1 zexo)

aononn

DIMENSION ACCNT (NCdim)
DIMENSION RNICE (4)

DATA RNICE/.1,.2,.25,.5/
DATA NNICE/4/

mantissa.

nnonan

DIFF= (AMAX-PMIN)/ (NCONT+1)
IF PIFF.IE.O0.} QU0 20
CHAR= ALOGLO (DIFF)+1.

Round CHAR down and get the mantissa.

a0

IF (CHAR.GE.O.) THEN

ENDIF
RVNT= DIFF*10,** (-ICHAR)

What's the next largest ™nice® mantissa?

aan

DO 3 I= 1,NNICE
IF (RMANT.IE.RNICE(I)} GCTO 10

3 CONTINGE

I= NNICE
c
C Got a guess, Calculate a DIFF, rcund AMIN down.
c

10 CONTINGE

AINC= RNICE(I)*10.**ICHAR

IMIN= AMIN/AINC

IF (AMIN,GT.IMIN*AINC) IMIN= IMIN+1

g
5
|

IF (NNEED.GT.NCONT) THEN

Nope. Try the next nice number.

ann

IF (I.LT.MNICE)} THEN
I= I+1

ELSE
TCHAR= ICHAR+]
=1

ENDIF

GoTo 10

ENDIF

Now jfust set up the ACONT arrav and update NCONT.
NCONT of the ACQTs for the folxs back name.)

aaonon

0O 1 I= 1, NeowT
ACONT(I)= (DMIN-1+I)*AINC
1 CONTINUVE
NCONT= NNEED

As a first appreximation, get the difference, its characteristic and

(Set up all (crig

Find the range (minimum and maximum) of the function F in the region IS

Care up with a ™nice” scaling of about NOONT values between AMIN and AR
NOONT is updated to the number of intervals actually needed.

NS
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Goro 30 do 110 ic= 2,ndtl
C is= isnext
¢ ALl values are the same — Just set up cne contour level. isnext= nad(lic)
c cmRNDG:MsMneMsbeendxanqedfcrparticularneedstothausez
20 CONTINUE c 1IF (ACONT (NLEV (IC-1}) .EQ.0.)GoTO 110
ACONT (1)= AMIN c IF(PCM(NLEV(IC‘I)).LT.O-)@IL DASH
DO 2 I= 2,NCONT : call curve(xcont (s, 1x},xcont (is,1y),isnext~-is,0)
ACONT(I)= O. CALL RESET ('DASH'}
2 CONTINUE 110 cantinue
NCONT= 1 c
c 200 continue
30 CONTINUE return
end
¢ Additions made by Sharon Stanaway, oct. 11, 1987 [eccosssss 00000000000 00800000080000EE000ERIEER Y 0086000000008 548EE0

if (izero.eq.l) goto 40
c 'miswasdmesothattheze_roccntmrisnotplo:ted
itest = O.
& 100 L = 1,ncont~1
if {acont (i) .EQ. 0.) itest =1
1f (itest.BQ.1) then
acont (1) = acont (141}
end if
100 continue
noont = noont-1

40 OINTINGE

RETURN
ED
muwumxxxxxxxxixxnxxnxxnxxl OCCCOCCoCCX )00 800008006
subroutine condi2 (m,n,m,mmmmmmm,m,
1 NAD, NLEV, ACONT, BLANKC)

Draw the contours we just calculated - this invalves sane
decoding. Also, we may or may not want labels on the contour
lires.

naooanon

logical labels

DIMENSION XCONT (XDTM, 2) , nad (NADDIM) , nlev (NRDDIM) , ACONT (NCaim)
DIMENSION blankc (NDIM)

{f (.not.labels) goto 100

Use DISSPIA's contour utilities so we can get labels.

(1]

ncd= nad (1)
if (nd.eq.0) goto 200
call boomon (DM}
call conbgn
isnext= 1
& 10 Lc= 1,nd
is= isnext
isnext= nad(ic+l}
call concxv(xcont (is,ix},xcont (s, iy}, isnext-1s,
¢ acont(nlev{ic)))
10 continue

call conend

a

Set scme contour drawing parameters.

call mnl.!.n(O,'SOIID',‘IAH-‘.IS‘,l,l)
call camin(2.5)
call conang (40.)
call height (.C8)

¢ Now actually draw them.
call contur(l, 'LABELS', ‘DRAW')

call reset (‘HEIGHT')
goto 200

2]

‘1 labels cn the contour lines - this is easy.

c
100 continue
nd= nad(l)
c write(6,1000) nd

¢ 1000 format (x, 'number of contour 1ines, nd(l) = ', i2)
if (nd.eq.0) goto 200
isnext= 1
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settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we con-
sider the case of "leapfrogging” vortex rings with Re = 1000. The results show severe straining of the inner vortex core in the
first pass and merging of the two cores during the sccond pass.
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